首页 | 本学科首页   官方微博 | 高级检索  
     

舱外服大循环量引射器优化设计与实验研究
引用本文:周远,王雷,梁志伟,孙鹏,罗江,朱艳芳. 舱外服大循环量引射器优化设计与实验研究[J]. 液压与气动, 2022, 0(10): 108-114. DOI: 10.11832/j.issn.1000-4858.2022.10.015
作者姓名:周远  王雷  梁志伟  孙鹏  罗江  朱艳芳
作者单位:1.中国航天员科研训练中心, 北京 100094; 2.山东大学控制科学与工程学院, 山东济南 250061
基金项目:国防科研基金(2021SY54B0910)
摘    要:为进一步提高舱外航天服供氧通风能力,对其引射器进行优化设计。采用一维气体动力学模型建立喷嘴控制方程;根据实验结果确定喷嘴等熵效率,设计缩放喷嘴;采用3D打印技术加工不同结构的引射器;利用氮气进行常压引射实验,研究挡板位置、喷嘴类型与喷嘴出口位置(Nozzle Exit Position,NXP)等结构参数对混合流量的影响,寻找最优的引射器结构。研究表明:挡板位置对引射器混合流量的影响与喷嘴类型相耦合。前移挡板,亚音速引射器混合流量可提高56.90%以上,而超音速引射器则降低12.08%以上。将渐缩喷嘴换为缩放喷嘴,混合流量可以提高1.81倍以上;对于挡板前移的亚音速引射器,则可提高36.90%以上。所有亚音速引射器均无法满足当前性能要求。然而,对于超音速引射器,对于所有的NXP,在典型工况下引射器循环量均可满足要求;存在最优的NXP使得混合流量最大。NXP为6 mm时,超音速引射器混合流量最大,为144.83 L/min(工作流绝对压力为0.503 MPa);在全工况下(工作流表压为0.30~0.55 MPa),混合流量可至少提高1.59倍。设计的最优引射器测试结果均满足性能要求。

关 键 词:舱外航天服  引射器  循环量  一维气体动力学模型  结构参数  常压引射实验  
收稿时间:2022-02-10

Optimization Design and Experimental Study on High Recirculation Rate Ejector for Extravehicular Activity Spacesuit
ZHOU Yuan,WANG Lei,LIANG Zhi-wei,SUN Peng,LUO Jiang,ZHU Yan-fang. Optimization Design and Experimental Study on High Recirculation Rate Ejector for Extravehicular Activity Spacesuit[J]. Chinese Hydraulics & Pneumatics, 2022, 0(10): 108-114. DOI: 10.11832/j.issn.1000-4858.2022.10.015
Authors:ZHOU Yuan  WANG Lei  LIANG Zhi-wei  SUN Peng  LUO Jiang  ZHU Yan-fang
Affiliation:1. China Astronaut Research and Training Center, Nanjing Institute of Technology, Beijing100094; 2. School of Control Science and Engineering, Shandong University, Jinan, Shandong250061
Abstract:In order to further improve the performance of the oxygen supply and ventilation in the extravehicular activity (EVA) spacesuit, an optimization design for high recirculation rate is performed on the ejector. The one dimensional gas dynamics model is employed to establish the governing equations of the primary nozzle, based on which, the convergent-divergent nozzle structure is calculated with the isentropic efficiency identified by the experimental results of the samples after mechanical environment test. The three dimensional printing technology is deployed to manufacture different geometries for the nitrogen entrainment experiment under normal atmosphere to investigate the effects of the damper location, nozzle type and nozzle exit position (NXP) upon the mixture flowrate of the ejector. The results show that the influence of the damper location interacts with that of the nozzle type. Moving forward the damper increases the mixture flowrate of the subsonic ejector by at least 56.90% while drops that for the supersonic one by at least 12.08%. By replacing the convergent nozzle with the convergent-divergent one, the flowrate growth of is above 1.81 times and that for the subsonic ejector with forward damper is above 36.90%. All subsonic ejectors fails to fulfill the current performance requirement whatever to change the NXP, whilst all supersonic ejectors can make it at the typical operating condition. There exists an optimum NXP to achieve the greatest mixture flowrate. The flowrate of the supersonic ejector is 144.83 L/min at 6 mm NXP under 0.503 MPa a primary pressure. At the whole working condition, where the working pressure ranges between 0.30~0.55 MPa, compared with the flowrates of the subsonic ejector, those of the optimum supersonic one increase by at least 1.59 times. The designed optimum supersonic ejector is capable to satisfy the performance demands.
Keywords:extravehicular activity spacesuit  ejector  recirculation rate  one dimensional gas dynamics model  geometrical parameters  entrainment experiment under normal atmosphere  
点击此处可从《液压与气动》浏览原始摘要信息
点击此处可从《液压与气动》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号