首页 | 本学科首页   官方微博 | 高级检索  
     

量子粒子群算法的改进实现
引用本文:潘大志,刘志斌. 量子粒子群算法的改进实现[J]. 计算机工程与应用, 2013, 49(10): 25-27
作者姓名:潘大志  刘志斌
作者单位:1.西华师范大学 数学与信息学院,四川 南充 6370092.西南石油大学 研究生学院,成都 610500
摘    要:为了进一步提高量子粒子群算法的精度,从描述粒子状态波函数的[δ]势阱特征长度[L(t)]出发,重新修改其评价方式。通过给群体中的每个粒子引入随机权重,生成随机权重平均最优位置来重新评价[L(t)],以增强算法的随机性,帮助算法逃离局部极小值点的束缚,使算法尽快找到全局极值点。通过几个典型函数测试表明,改进算法的收敛精度优于QPSO算法,并且具有很强的避免陷入局部极值点的能力。

关 键 词:粒子群优化  量子粒子群优化  随机权重  随机加权平均最优位置  

Realization of improved Quantum-behaved Particle Swarm Optimization algorithm
PAN Dazhi,LIU Zhibin. Realization of improved Quantum-behaved Particle Swarm Optimization algorithm[J]. Computer Engineering and Applications, 2013, 49(10): 25-27
Authors:PAN Dazhi  LIU Zhibin
Affiliation:1.College of Mathematic and Information, China West Normal University, Nanchong, Sichuan 637009, China2.Graduate School of Southwest Petroleum University, Chengdu 610500, China
Abstract:In order to further improve the accuracy of Quantum Particle Swarm Optimization algorithm, the evaluation method of δ trap characteristic length L(t) of wave function for describing the particle’s state is modified. Introducing a random weight to each particle in swarm, and generating a random -weighed mean best position to reassess L(t) , enhance the algorithmic randomness, help algorithm to escape from local minima to manacle, make the algorithm to find the global extreme points. Through the test of several typical functions, its result shows that the convergence accuracy of the improved algorithm is better than QPSO algorithm’s, and it can be very strong to avoid falling into local extremums.
Keywords:Particle Swarm Optimization  Quantum-behaved Particle Swarm Optimization  random weight  random-weighted mean best position
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号