首页 | 本学科首页   官方微博 | 高级检索  
     

利用概率主题模型的遥感影像半监督分类
引用本文:易文斌,冒亚明,慎利. 利用概率主题模型的遥感影像半监督分类[J]. 计算机工程与应用, 2013, 49(10): 1-4
作者姓名:易文斌  冒亚明  慎利
作者单位:1.中国石油安全环保技术研究院 HSE信息中心,北京 1022062.北京师范大学 资源学院,北京 100875
摘    要:土地覆盖是自然环境与人类活动相互作用的中心,而土地覆盖信息主要是通过遥感影像分类来获取,因此影像分类是遥感影像分析的最基本问题之一。在参考基于概率主题模型的高分辨率遥感影像聚类分析的基础上,通过半监督学习最典型的生成模型方法引出了基于概率主题模型的半监督分类(SS-LDA)算法。借鉴SS-LDA模型在文本识别应用的流程,构建了基于SS-LDA算法的高分辨率遥感影像分类的基本流程。通过实验证明,相对于传统的非监督分类与监督分类算法,SS-LDA算法能够获取较高精度的影像分类结果。

关 键 词:概率主题模型  高分辨率影像  半监督模型  影像分类  

Semi-supervised classification of remote sensing image based on probabilistic topic model
YI Wenbin,MAO Yaming,SHEN Li. Semi-supervised classification of remote sensing image based on probabilistic topic model[J]. Computer Engineering and Applications, 2013, 49(10): 1-4
Authors:YI Wenbin  MAO Yaming  SHEN Li
Affiliation:1.HSE Information Center, CNPC Institute of Satefy & Environment Technology, Beijing 102206, China2.College of Resources Science & Technology, Beijing Normal University, Beijing 100875, China
Abstract:Land cover is the center of the interaction of the natural environment and human activities and the acquisition of land cover information are obtained through the classification of remote sensing images, so the image classification is one of the most basic issues of remote sensing image analysis. Based on the image clustering analysis of high-resolution remote sensing image through the probabilistic topic model, the generated model which is a typical method in the semi-supervised learning is analyzed and a classification method based on probabilistic topic model and semi-supervised learning(SS-LDA)is formed in the paper. The process of SS-LDA model used in the text recognition applications is relearned and a basic image classification process of high-resolution remote sensing image is constructed. Comparing to traditional unsupervised classification and supervised classification algorithm, the SS-LDA algorithm will get more accuracy of image classification results through experiments.
Keywords:probability topic model  high resolution image  semi-supervised model  image classification
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号