首页 | 本学科首页   官方微博 | 高级检索  
     


Actuator and sensor fault detection and isolation for nonlinear systems subject to uncertainty
Authors:Hadi Shahnazari  Prashant Mhaskar
Affiliation:Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
Abstract:This work addresses the problem of simultaneous actuator and sensor fault detection and isolation (FDI) for control affine nonlinear uncertain systems in the absence of measurement noise. The FDI is achieved by using a bank of filters, which utilize a subset of the measurements along with prescribed values of the control actuators to estimate states and compute expected process behavior. Residuals are next defined as the difference between the observed and expected behavior. Detectability conditions are developed, which, upon satisfaction, ensure that each residual remains sensitive to a subset of fault scenarios in the presence of uncertainty. To this end, first the ability of observers in providing bounded estimation error for a generalized class of nonlinear uncertain systems is rigorously established. These bounds allow determining thresholds that account for the impact of uncertainty on each residual. Finally, the ability of the proposed framework to achieve FDI by ensuring a unique residual breaching pattern for each fault scenario is established. The efficacy of the FDI framework subject to uncertainty and measurement noise is illustrated using a chemical reactor example.
Keywords:actuator faults  detectability analysis  fault diagnosis  high‐gain observers  nonlinear systems  sensor faults  uncertainty
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号