首页 | 本学科首页   官方微博 | 高级检索  
     

码长连续变化的QC-LDPC码的设计
引用本文:刘磊, 周武旸. 码长连续变化的QC-LDPC码的设计[J]. 电子与信息学报, 2009, 31(10): 2523-2526. doi: 10.3724/SP.J.1146.2008.00635
作者姓名:刘磊  周武旸
作者单位:中国科学技术大学无线网络通信实验室,合肥,230027;中国科学技术大学无线网络通信实验室,合肥,230027
基金项目:国家863计划重点项目,国家973计划项目,中瑞国际合作项目,安徽省自然科学基金(070412044)资助课题 
摘    要:该文基于有限多项式环的理论,提出了码长连续变化的准循环低密度奇偶校验(Quasi-Cyclic Low Density Parity Check, QC-LDPC)码的设计方法。当有限环基数大于某个门限值时,在此环内通过一定规则选择参数生成移位项,利用它们构造出的校验矩阵均可以达到较大的圈长(girth)值。在设计中,有限环基数为连续的整数,且基数与码长呈线性关系,因此能够在girth值不变的前提下实现码长的连续变化。该文分析并证明了该构造方法大大增加了可用的高性能QC-LDPC码数量,更好地服务于自适应链路系统。

关 键 词:低密度奇偶校验码  准循环  有限多项式环  圈长  连续可变码长
收稿时间:2008-05-21
修稿时间:2009-06-29

Design of QC-LDPC Code with Continuously Variable Length
Liu Lei, Zhou Wu-yang. Design of QC-LDPC Code with Continuously Variable Length[J]. Journal of Electronics & Information Technology, 2009, 31(10): 2523-2526. doi: 10.3724/SP.J.1146.2008.00635
Authors:Liu Lei Zhou Wu-yang
Affiliation:Wireless Information Network Lab, Dept. Electronic Engineering and Information Science, University of Science and Technology of China, Hefei 230027, China
Abstract:Based on the theory of finite polynomial ring, a novel code design method for Quasi-Cyclic Low Density Parity Check (QC-LDPC) codes with continuously variable length is proposed. When the cardinal number of the ring is larger than a certain threshold, the shift offset values can be formulated by the parameters selected in the ring. Thus all H matrices constructed by them have larger girth. In the design, the cardinal number of the ring is a continuously variable integer, which has a linear relation with the code length, so that the code length can be increased continuously. Analyses and proofs show that, the method can enlarge the number of QC-LDPC codes greatly, which can serve the adaptive link systems better.
Keywords:LDPC codes  Quasi-Cyclic  Finite polynomial ring  Girth  Continuously variable code length
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《电子与信息学报》浏览原始摘要信息
点击此处可从《电子与信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号