首页 | 本学科首页   官方微博 | 高级检索  
     

解多目标约束问题的改进MaxMin-PSO算法
引用本文:黄圣杰,罗琦,佟金颖. 解多目标约束问题的改进MaxMin-PSO算法[J]. 计算机工程与应用, 2008, 44(15): 48-50. DOI: 10.3778/j.issn.1002-8331.2008.15.014
作者姓名:黄圣杰  罗琦  佟金颖
作者单位:南京信息工程大学,信息与控制学院,南京,210044;南京信息工程大学,信息与控制学院,南京,210044;南京信息工程大学,信息与控制学院,南京,210044
摘    要:将最大最小化适应度函数与罚函数相结合,提出了一种实用有效求解多目标约束优化问题的粒子群算法。采用归类和比较的思想进行替换非劣解;改变以往全局最优值的选取方法,而采用轮序方式从非劣解中获取。实验证明改进的MaxMin-PSO算法能更加有效的逼近Pareto解,收敛速度更快,分布更均匀,且能很好的抑制低维多目标约束问题的发散现象。

关 键 词:粒子群算法  最大最小适应函数  轮序  罚函数
文章编号:1002-8331(2008)15-0048-03
收稿时间:2007-09-04
修稿时间:2007-09-04

Improved MaxMin Particle Swarm Optimization for solving multiobjective constrained optimization problems
HUANG Sheng-jie,LUO Qi,TONG Jin-ying. Improved MaxMin Particle Swarm Optimization for solving multiobjective constrained optimization problems[J]. Computer Engineering and Applications, 2008, 44(15): 48-50. DOI: 10.3778/j.issn.1002-8331.2008.15.014
Authors:HUANG Sheng-jie  LUO Qi  TONG Jin-ying
Affiliation:Department of Information and Communication,Nanjing University of Science and Technology,Nanjing 210044,China
Abstract:In this paper,Max-Min fitness function and penalty function are combined together,and a practical and effective particle swarm optimization algorithm is proposed to solve multi-objectives constrained optimization problems.Non-inferior solutions are replaced according to the idea of cluster and compare.The method of selecting globally optimal solution from non-inferior solutions in turn is adopted instead of the ancient method.The experimental results show that the modified MaxMin-PSO algorithm converges more quickly and efficiently to Pareto solutions and achieve a well distribution.It also restrains the radiation of low dimension multi-objectives constrained functions.
Keywords:particle swarm algorithm  MaxMin function  turn list  punish function
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号