首页 | 本学科首页   官方微博 | 高级检索  
     

基于认知功能连接的信息流增益计算方法及应用
引用本文:闫铮, 高小榕, 应俊. 基于认知功能连接的信息流增益计算方法及应用[J]. 电子与信息学报, 2014, 36(11): 2756-2761. doi: 10.3724/SP.J.1146.2013.02019
作者姓名:闫铮  高小榕  应俊
作者单位:1. 华侨大学信息科学与工程学院 厦门 361021
2. 清华大学生物医学工程系 北京 100084
基金项目:国家自然科学基金(61203369)资助课题
摘    要:将网络信息的概念引入到神经科学当中对于研究脑功能机制有着积极的作用。然而人脑网络的复杂性对于理解有一定的困难。该文基于有向传递函数(Directed Transfer Function, DTF)的方法估计得到功能连接模式,进一步提出了信息流增益的计算方法,用以评价特定脑区在全脑信息传输过程中的作用。该方法将流入信息和流出信息结合,具有浓缩两者信息的优点,简化了脑复杂网络的辨识度,并且提高了结果的显示标度。仿真运算和自发、诱发脑电数据的结果都显示出通过计算分析信息流增益可以比较理想地得到各个脑区对全脑信息流的贡献。结果证明信息流增益方法为进一步理解大脑认知机制提供了可能。

关 键 词:脑神经网络   认知功能连接   有向传递函数   信息流增益
收稿时间:2013-12-25
修稿时间:2014-05-13

The Flow Gain Methods and Applications Based on Cognition Functional Connectivity
Yan Zheng, Gao Xiao-Rong, Ying Jun. The Flow Gain Methods and Applications Based on Cognition Functional Connectivity[J]. Journal of Electronics & Information Technology, 2014, 36(11): 2756-2761. doi: 10.3724/SP.J.1146.2013.02019
Authors:Yan Zheng  Gao Xiao-rong  Ying Jun
Abstract:It has a positive effect on the research of brain function to introduce the concept of network into neuroscience. However, in the real application the brain network with complex characteristics makes it hard to understand. In this paper, based on the functional connectivity patterns estimated by the Directed Transfer Function (DTF) methods, flow gain is proposed to assess the role of the specific brain region involved in the information transmission process. Integrating input and output information simultaneously, flow gain simplifies the identification of complex networks, as well as improves the display scale of the results. Both the simulation and spontaneous, evoked ElectroEncephaloGram (EEG) data indicate that flow gain can describe the output intensity of specific region to the whole brain. The results prove that with the definition of flow gain, it is possible to further the understanding of brain cognitive mechanism.
Keywords:Brain neural network  Cognition functional connectivity  Directed Transfer Function (DTF)  Information flow gain
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《电子与信息学报》浏览原始摘要信息
点击此处可从《电子与信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号