首页 | 本学科首页   官方微博 | 高级检索  
     

NMF的数据分类方法在肿瘤分类上的应用
引用本文:张忠元,章祥荪. NMF的数据分类方法在肿瘤分类上的应用[J]. 计算机工程与应用, 2010, 46(16): 245-248. DOI: 10.3778/j.issn.100--8331.2010.16.071
作者姓名:张忠元  章祥荪
作者单位:1.中央财经大学 统计学院,北京 100081 2.中国科学院 数学与系统科学研究院,北京 100190
基金项目:国家青年基金,中央财经大学学科建设基金 
摘    要:在生物信息学中,一个重要的问题是基于微芯片技术将肿瘤分类到不同的类别中去。和许多传统的分类问题相比,这个问题的主要困难是基因空间的维数很高,而要分类的样本数量很小。非负矩阵分解(NMF)在微芯片数据聚类问题中已经成功地解决了这个问题。将非负矩阵分解拓展到数据分类,尤其是肿瘤分类中去取得了很好的效果。基于非负矩阵分解的方法有三个优点:良好的分类成绩,无参数和良好的可解释性。

关 键 词:非负矩阵分解  微芯片  数据分类  
收稿时间:2008-12-09
修稿时间:2009-5-4 

NMF-based method for data classification
ZHANG Zhong-yuan,ZHANG Xiang-sun. NMF-based method for data classification[J]. Computer Engineering and Applications, 2010, 46(16): 245-248. DOI: 10.3778/j.issn.100--8331.2010.16.071
Authors:ZHANG Zhong-yuan  ZHANG Xiang-sun
Affiliation:1.School of Statistics,Central University of Finance and Economics,Beijing 100081,China 2.Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China
Abstract:In bioinformatics,an important task is to classify tumor samples into different classes based on microarray technology which enables people to monitor entire genome in a single chip using a system's approach.The key difficulty of this problem,compared with many traditional classification problems,is the high dimensionality in gene space and the small number of samples that will be classified.Non-negative Matrix Factorization(NMF) has coped with this difficulty successfully in microarray data clustering.NMF is extended to tumor classification and the result shows its competition.NMF-based method has three advantages:Good classification performance,parameter-independent and good interpretability.
Keywords:Non-negative Matrix Factorization(NMF)  microarray  data classification
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号