首页 | 本学科首页   官方微博 | 高级检索  
     

基于LSTM神经网络的人体动作识别
引用本文:杨世强,杨江涛,李卓,王金华,李德信. 基于LSTM神经网络的人体动作识别[J]. 图学学报, 2021, 42(2): 174-181. DOI: 10.11996/JG.j.2095-302X.2021020174
作者姓名:杨世强  杨江涛  李卓  王金华  李德信
作者单位:西安理工大学机械与精密仪器工程学院,陕西 西安 710048
基金项目:国家自然科学基金项目(51475365);陕西省自然科学基础研究计划项目(2017JM5088)。
摘    要:人体动作识别为人机合作提供了基础支撑,机器人通过对操作者动作进行识别和理解,可以提高制造系统的柔性和生产效率.针对人体动作识别问题,在三维骨架数据的基础上,对原始三维骨架数据进行平滑去噪处理以符合人体关节点运动的平滑规律;构建了由静态特征和动态特征组成的融合特征用来表征人体动作;引入了关键帧提取模型来提取人体动作序列中...

关 键 词:动作识别  融合特征  LSTM神经网络  注意力机制  Dropout

Human action recognition based on LSTM neural network
YANG Shi-qiang,YANG Jiang-tao,LI Zhuo,WANG Jin-hua,LI De-xin. Human action recognition based on LSTM neural network[J]. Journal of Graphics, 2021, 42(2): 174-181. DOI: 10.11996/JG.j.2095-302X.2021020174
Authors:YANG Shi-qiang  YANG Jiang-tao  LI Zhuo  WANG Jin-hua  LI De-xin
Affiliation:School of Mechanical and Instrumental Engineering, Xi’an University of Technology, Xi’an Shaanxi 710048, China
Abstract:Human action recognition provides the basic support for human-computer cooperation.Robots can enhance the flexibility and production efficiency of manufacturing system by recognizing and understanding the operator’s action.To resolve the problem of human motion recognition,the original 3D skeleton data was smoothed and denoised to conform to the smooth rule of human joint-point motion based on 3D skeleton data.The fusion feature composed of static and dynamic features was constructed to represent human action.The key frame extraction model was introduced to extract the key frames in human action sequences to reduce the computing load.A Bi-LSTM neural network model based on LSTM neural network was established to classify human actions,and the attention mechanism and Dropout were utilized to classify and recognize human actions,with the main parameters of the neural network optimized by the orthogonal test method.Finally,the open data set was employed for the action recognition experiment.The results show that the proposed model algorithm has a high recognition rate for human actions.
Keywords:action recognition  fusion features  LSTM neural network  attention mechanism  Dropout
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《图学学报》浏览原始摘要信息
点击此处可从《图学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号