首页 | 本学科首页   官方微博 | 高级检索  
     

疏水表面结霜初期液滴生长的理论分析
引用本文:吴晓敏,褚福强,陈永根. 疏水表面结霜初期液滴生长的理论分析[J]. 化工学报, 2015, 66(Z1): 60-64. DOI: 10.11949/j.issn.0438-1157.20150325
作者姓名:吴晓敏  褚福强  陈永根
作者单位:清华大学热能工程系热科学与动力工程教育部重点实验室, 北京市CO2资源利用与减排技术重点实验室, 北京 100084
基金项目:国家自然科学基金项目,清华大学自主科研计划项目(20131089319).Foundation item: supported by the National Natural Science Foundation of China,the Tsinghua University Initiative Scientific Research Program
摘    要:研究了自然对流条件下疏水表面结霜初期冷凝液滴的生长过程, 建立了考虑不凝气影响的液滴传热及生长模型, 分析了表面接触角和冷面温度对液滴生长的影响。结果表明, 液滴生长过程中的主要热阻为液滴内部导热热阻和相界面热阻, 随着表面接触角的增大, 这两个主要热阻均增大, 因此表面疏水性越好, 液滴生长越缓慢;而由于冷凝传热温差随冷面温度降低而增大, 因此冷面温度越低, 液滴生长越快。

关 键 词:表面  冷凝  液滴  生长  传热  热阻  
收稿时间:2015-03-16
修稿时间:2015-03-26

Theoretical analysis of droplets growth in early stage of frosting on hydrophobic surfaces
WU Xiaomin,CHU Fuqiang,CHEN Yonggen. Theoretical analysis of droplets growth in early stage of frosting on hydrophobic surfaces[J]. Journal of Chemical Industry and Engineering(China), 2015, 66(Z1): 60-64. DOI: 10.11949/j.issn.0438-1157.20150325
Authors:WU Xiaomin  CHU Fuqiang  CHEN Yonggen
Affiliation:Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory for CO2 Utilization and Reduction Technology, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China
Abstract:Droplets condensation and growth in the early stage of frosting on hydrophobic surfaces was researched under the natural convection condition. A heat transfer and growth model considered noncondensable gas was developed to clear the influences of surface contact angle and surface temperature on droplets growth. The results show that the two main thermal resistances during the droplet growth stage are the conduction thermal resistance inside the droplet and the phase interface thermal resistance, and both the two thermal resistances increase with surface contact angle, so droplets have a lower growth rate on surface with big contact angle. In addition, the droplets grow faster on surfaces with lower temperature, because colder surfaces could cause bigger heat transfer temperature differences.
Keywords:surface  condensation  droplet  growth  heat transfer  thermal resistance
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《化工学报》浏览原始摘要信息
点击此处可从《化工学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号