首页 | 本学科首页   官方微博 | 高级检索  
     

基于SVM结合依存句法的金融领域舆情分析
引用本文:黄 进,阮 彤,蒋锐权. 基于SVM结合依存句法的金融领域舆情分析[J]. 计算机工程与应用, 2015, 51(23): 230-235
作者姓名:黄 进  阮 彤  蒋锐权
作者单位:1.华东理工大学 信息学院,上海 2002372.上海证券交易所 技术部,上海 200120
摘    要:
用户的情感倾向与市场波动之间的联系,对金融市场的监控和股价异常处理有着重要作用,因此针对金融领域用户生成的文本进行情感分析很有意义。然而,由于金融领域文本的术语比较多,句子比较长,以及缺乏现成的情感语料库,所以针对该领域的情感分析研究目前还比较少。根据金融领域文本的特点,充分考虑到金融领域情感词的特征、单个句子中词语的位置权重以及情感词相互间的修饰关系,提出SVM分类结合Stanford句法依存分析方法,计算文档的情感值。利用重要财经网站上抽取的金融领域数据进行实验,综合值F达到了82.1%,比文献中其他方法更为精准。

关 键 词:金融领域  情感分析  位置关系  支持向量机(SVM)  依存分析  

Sentiment analysis in financial domain based on SVM with dependency syntax
HUANG Jin,RUAN Tong,JIANG Ruiquan. Sentiment analysis in financial domain based on SVM with dependency syntax[J]. Computer Engineering and Applications, 2015, 51(23): 230-235
Authors:HUANG Jin  RUAN Tong  JIANG Ruiquan
Affiliation:1.School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China2.Department of Technology, Shanghai Stock Exchange, Shanghai 200120, China
Abstract:
The linkages between users emotional tendencies and market fluctuations to monitor and handle the market price of exception play an important role, so the sentiment analysis of user-generated text in financial sector becomes meaningful. However, due to the longer sentences and term of the financial sector, and not many ready-made emotional corpus, sentiment analysis research in this field is still relatively small. Based on the characteristics of financial sector, it uses the SVM classification with Stanford syntactic dependency analysis to calculate the document emotional value which fully takes into account the characteristics of emotional words, the words position weights and the modification of relationship between each other. Through the experimentation online extraction data which from the important financial website, the integrated value of F reaches 82.1%, more accurate than other methods in the literature.
Keywords:financial domain  sentiment analysis  positional relationship  Support Vector Machine(SVM)  dependency parsing  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号