首页 | 本学科首页   官方微博 | 高级检索  
     

改进的F-score算法在语音情感识别中的应用
引用本文:叶吉祥,王聪慧. 改进的F-score算法在语音情感识别中的应用[J]. 计算机工程与应用, 2013, 49(16): 137-141
作者姓名:叶吉祥  王聪慧
作者单位:长沙理工大学 计算机与通信工程学院,长沙 410114
基金项目:国家自然科学基金(No.61170199);湖南省教育厅重点资助项目(No.11A004)。
摘    要:针对F-score特征选择算法不能揭示特征间互信息而不能有效降维这一问题,应用去相关的方法对F-score进行改进,利用德语情感语音库EMO-DB,在提取语音情感特征的基础上,根据支持向量机(SVM)的分类精度选择出分类效果最佳的特征子集。与F-score特征选择算法对比,改进后的算法实现了候选特征集较大幅度的降维,选择出了有效的特征子集,同时得到了较理想的语音情感识别效果。

关 键 词:特征选择  F-score  互信息  支持向量机  语音情感识别  

Application of improvement of F-score algorithm in speech emotion recognition
YE Jixiang , WANG Conghui. Application of improvement of F-score algorithm in speech emotion recognition[J]. Computer Engineering and Applications, 2013, 49(16): 137-141
Authors:YE Jixiang    WANG Conghui
Affiliation:Department of Computer & Communication Engineering, Changsha University of Science and Technology, Changsha 410114, China
Abstract:For the F-score feature selection algorithm can not reveal the mutual information among features, the method of removing the redundancy is applied to improve the F-score algorithm. Using the German emotional speech database EMO-DB, based on the extraction of speech emotion features, the paper uses the classification accuracy of SVM to choose the best feature subset. Compared with the F-score method, the improved feature selection algorithm can achieve dimension reduction substantially, select an effective feature subset, and obtain an ideal speech emotion recognition accuracy.
Keywords:feature selection  F-score  mutual information  Support Vector Machine(SVM)  speech emotion recognition
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号