首页 | 本学科首页   官方微博 | 高级检索  
     

基于多核处理器的K线程低能耗的任务调度优化算法
引用本文:王科特,王力生,廖新考. 基于多核处理器的K线程低能耗的任务调度优化算法[J]. 计算机科学, 2015, 42(2): 18-23
作者姓名:王科特  王力生  廖新考
作者单位:同济大学电子与信息工程学院计算机系 上海201804
基金项目:本文受国家863计划项目(2013AA040302),国家高技术研究发展计划(863计划),高端大规模PLC可编程自动化系统研制及应用(2013AA040302),上海经信委重大技术装备研制专项:大型PLC控制器的研制及应用(ZB-ZBYZ-03-12-1067-1)资助
摘    要:针对具有独立DVFS的多核处理器系统,提出了一种K线程低能耗模型的并行任务调度优化算法(Tasks Optimization based on Energy-Effectiveness Model,TO-EEM)。与传统的并行任务节能调度相比,该算法的主要目标是不仅通过降低处理器频率来减少处理器瞬时功耗,而且结合并行任务间的同步互斥所造成的线程阻塞情况,合理分配线程资源来减少线程同步时间,优化并行性能;保证任务在一定的并行加速比性能前提下,提高资源利用率,减少能耗,达到程序能耗和性能之间的折衷。文中进行了大量模拟实验,结果证明提出的任务优化模型算法节能效果明显,能有效降低处理器的功耗,并始终保持线性加速比。

关 键 词:多核  能耗优化模型  多线程  多任务并行  资源利用率  同步
收稿时间:2014-04-08
修稿时间:2014-06-03

K-threaded Low Energy-consuming Task Scheduling Optimization Algorithm Based on Multi-core Processors
WANG Ke-te,WANG Li-sheng and LIAO Xin-kao. K-threaded Low Energy-consuming Task Scheduling Optimization Algorithm Based on Multi-core Processors[J]. Computer Science, 2015, 42(2): 18-23
Authors:WANG Ke-te  WANG Li-sheng  LIAO Xin-kao
Affiliation:Department of Computer Science,College of Electronic and Information Engineering,Tongji University,Shanghai 201804,China,Department of Computer Science,College of Electronic and Information Engineering,Tongji University,Shanghai 201804,China and Department of Computer Science,College of Electronic and Information Engineering,Tongji University,Shanghai 201804,China
Abstract:Based on multi-core processor system with independent DVFS module,this paper proposed a K-threaded low-power optimal algorithm for parallel task modeling which is tasks optimization based on Energy-Effectiveness Model(TO-EEM).Compared with the traditional energy-efficient scheduling of parallel tasks,the main solution for reducing processor power consumption reduces synchronization duration between threads and optimizes parallelism performance not only by decreasing the instantaneous frequency of processors,but also rationally allocating thread resources .Regar-ding tasks with a certain acceptable speedup performance,we improved resource utilization and reduced energy consumption to reach a compromise between power consumption and program performance.The paper carried a lot of simulation experiments,and the result presents that the proposed task optimization scheduling model has a effective impact on reducing processor power consumption,and still maintains a linear speedup.
Keywords:Multi-core  Energy-effectiveness model  Multi-thread  Multi-task parallelism  Resource Usage  Synchronization
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号