首页 | 本学科首页   官方微博 | 高级检索  
     

基于邻域图的低秩投影学习
引用本文:胡文涛,陈秀宏. 基于邻域图的低秩投影学习[J]. 计算机工程与应用, 2021, 57(7): 209-214. DOI: 10.3778/j.issn.1002-8331.1912-0471
作者姓名:胡文涛  陈秀宏
作者单位:江南大学 数字媒体学院,江苏 无锡 214122
基金项目:江苏省研究生科研与实践创新计划项目
摘    要:特征提取算法通常只单独用到了数据的局部结构或者整体结构,这样将得不到全局最优投影矩阵,且投影矩阵不具备很好的可解释性.为此,提出了一种基于邻域图的低秩投影学习算法.该算法通过在数据的重构残差上施加图约束来保持数据的局部结构,同时引入低秩项来保持整体结构;算法利用L2,1范数行稀疏的性质对投影矩阵进行约束,这样可以剔除冗...

关 键 词:图像处理  特征提取  低秩表示  人脸识别

Low-Rank Projection Learning Based on Neighbor Graph
HU Wentao,CHEN Xiuhong. Low-Rank Projection Learning Based on Neighbor Graph[J]. Computer Engineering and Applications, 2021, 57(7): 209-214. DOI: 10.3778/j.issn.1002-8331.1912-0471
Authors:HU Wentao  CHEN Xiuhong
Affiliation:School of Digital Media, Jiangnan University, Wuxi, Jiangsu 214122, China
Abstract:The feature extraction algorithms only use the local structure or the global structure of data, so they will not get the global optimal projection matrix, and projection matrix does not have good interpretability. In this paper, a low-rank projection learning algorithm based on neighborhood graph is proposed. The algorithm imposes the graph constraint on the reconstruction error of data to maintain the local structure of data , and introduces a low-rank term to preserve the global structure; the property of L2,1 norm row sparsity is used to constrain the projection matrix. In this way, redundant features can be eliminated, and the interpretability of projection matrix can be improved. Meanwhile, a noise sparse term is introduced to weaken the interference of noise from samples. The model is solved by alternating iteration method, and the experimental results on multiple datasets show that the algorithm can effectively improve the classification accuracies.
Keywords:image processing  feature extraction  low-rank representation  face recognition  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号