首页 | 本学科首页   官方微博 | 高级检索  
     

改进YOLOv3的矿石输送带杂物检测方法
引用本文:薄景文,张春堂,樊春玲,李海菊. 改进YOLOv3的矿石输送带杂物检测方法[J]. 计算机工程与应用, 2021, 57(21): 248-255. DOI: 10.3778/j.issn.1002-8331.2105-0025
作者姓名:薄景文  张春堂  樊春玲  李海菊
作者单位:青岛科技大学 自动化与电子工程学院,山东 青岛 266100
摘    要:针对矿石输送带上夹杂的废旧木头、钢钎、塑料导爆管等杂物会对后续选矿设备造成严重破环的问题,提出一种改进YOLOv3的矿石输送带杂物检测方法YOLO-Ore。将轻量级网络Mobilenetv2作为主干特征提取网络,利用深度可分离卷积和逆残差结构,缩减了模型容量,丰富了特征信息;将语义分割网络PSPnet中的金字塔池化模块PPM融入到特征提取过程当中,有效聚合不同尺度的上下文信息;引入注意力机制CBAM,同时在空间维度和通道维度上进行特征增强;对YOLOv3的FPN结构简化,删减参数冗余的卷积层,实现进一步的模型压缩。利用数据增广技术构建矿石杂物数据集,并对所提方法的有效性进行实验对比验证。结果表明,和原YOLOv3算法相比,所提方法YOLO-Ore能够准确快速地检测矿石输送带杂物。

关 键 词:目标检测  深度可分离卷积  轻量级  特征融合  注意力机制  

Ore Conveyor Belt Sundries Detection Based on Improved YOLOv3
BO Jingwen,ZHANG Chuntang,FAN Chunling,LI Haiju. Ore Conveyor Belt Sundries Detection Based on Improved YOLOv3[J]. Computer Engineering and Applications, 2021, 57(21): 248-255. DOI: 10.3778/j.issn.1002-8331.2105-0025
Authors:BO Jingwen  ZHANG Chuntang  FAN Chunling  LI Haiju
Affiliation:College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266100, China
Abstract:Aiming at the problem that the waste wood, steel chisel, plastic pipe and other sundries on the ore conveyor belt will cause serious damage to the subsequent mineral processing equipment, this paper proposes an improved object detection algorithm YOLO-Ore based on YOLOv3 to identify these sundries. The lightweight network Mobilenetv2 is used as the backbone feature extraction network, and the deep separable convolution and inverse residual structure are used to reduce the model capacity and enrich the feature information. The pyramid pooling module PPM in the semantic segmentation network PSPnet is integrated into the feature extraction process to effectively aggregate contextual information of different scales. The attention mechanism CBAM is used to enhance the features in the spatial and channel dimensions at the same time. The FPN structure of YOLOv3 is simplified by deleting the convolutional layer of redundant parameters to achieve further model compression. The dataset of ore sundries is constructed by the data augmentation technology, and the effectiveness of the proposed method is compared and verified by experiments. The results show that, compared with the original YOLOv3 algorithm, the proposed method YOLO-Ore can detect sundries on the ore conveyor belt accurately and quickly.
Keywords:object detection  depthwise separable convolution  lightweight  feature fusion  attention mechanism  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号