首页 | 本学科首页   官方微博 | 高级检索  
     

面向嵌入式的卷积神经网络硬件加速器设计
引用本文:唐蕊,焦继业,徐华昊. 面向嵌入式的卷积神经网络硬件加速器设计[J]. 计算机工程与应用, 2021, 57(4): 252-257. DOI: 10.3778/j.issn.1002-8331.1912-0099
作者姓名:唐蕊  焦继业  徐华昊
作者单位:西安邮电大学 计算机学院,西安 710121
摘    要:近年来,随着神经网络模型越来越复杂,针对卷积神经网络推理计算所需内存空间过大,限制其在嵌入式设备上部署的问题,提出一种动态多精度定点数据量化硬件结构,使用定点数代替训练后推理过程中的浮点数执行卷积运算.结果表明,采用16位动态定点量化和并行卷积运算硬件架构,与静态量化策略相比,数据准确率高达97.96%,硬件单元的面积...

关 键 词:卷积神经网络  嵌入式设备  动态多精度定点数据量化  并行卷积运算硬件架构

Design of Hardware Accelerator for Embedded Convolutional Neural Network
TANG Rui,JIAO Jiye,XU Huahao. Design of Hardware Accelerator for Embedded Convolutional Neural Network[J]. Computer Engineering and Applications, 2021, 57(4): 252-257. DOI: 10.3778/j.issn.1002-8331.1912-0099
Authors:TANG Rui  JIAO Jiye  XU Huahao
Affiliation:School of Computer Science & Technology, Xi’an University of Posts & Telecommunications, Xi’an 710121, China
Abstract:In recent years, neural network models become more and more complex. Aiming at the large memory space required for convolutional neural network inference calculations, which limits its deployment on embedded devices, a dynamic multi-precision fixed-point data quantization hardware structure is proposed. It uses fixed-point data instead of floating-point data during neural network inference to perform convolutional operations. The results show that compared with the static quantization strategy, using a 16 bit fixed-point dynamic quantization and parallel convolutional operation hardware architecture, data accuracy is up to 97.96%. The hardware unit area is only 13740 gates, and the memory footprint and bandwidth requirement are reduced 50%. In addition, compared with Cortex M4, which performs convolutional operations using floating-point data, the embedded system SoC performance is improved more than 90%.
Keywords:convolutional neural network  embedded devices  dynamic multi-precision fixed-point data quantization  parallel convolutional operation hardware architecture  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号