首页 | 本学科首页   官方微博 | 高级检索  
     

融合知识表示和深度强化学习的知识推理方法
引用本文:宋浩楠,赵刚,王兴芬. 融合知识表示和深度强化学习的知识推理方法[J]. 计算机工程与应用, 2021, 57(19): 189-197. DOI: 10.3778/j.issn.1002-8331.2104-0430
作者姓名:宋浩楠  赵刚  王兴芬
作者单位:北京信息科技大学 信息管理学院,北京 100192
摘    要:知识推理是解决知识图谱中知识缺失问题的重要方法,针对大规模知识图谱中知识推理方法仍存在可解释性差、推理准确率和效率偏低的问题,提出了一种将知识表示和深度强化学习相结合的方法RLPTransE.利用知识表示学习方法,将知识图谱映射到含有三元组语义信息的向量空间中,并在该空间中建立强化学习环境.通过单步择优策略网络和多步推...

关 键 词:知识推理  深度强化学习  知识表示  路径控制  规则挖掘

Knowledge Reasoning Method Combining Knowledge Representation with Deep Reinforce-ment Learning
SONG Haonan,ZHAO Gang,WANG Xingfen. Knowledge Reasoning Method Combining Knowledge Representation with Deep Reinforce-ment Learning[J]. Computer Engineering and Applications, 2021, 57(19): 189-197. DOI: 10.3778/j.issn.1002-8331.2104-0430
Authors:SONG Haonan  ZHAO Gang  WANG Xingfen
Affiliation:School of Information Management, Beijing Information Science & Technology University, Beijing 100192, China
Abstract:Knowledge reasoning is an important method to solve the problem of lack of knowledge in the knowledge graph. The knowledge reasoning method in the large-scale knowledge graph still has the problems of poor interpretability, low reasoning accuracy and efficiency. This paper proposes a method RLPTransE that combines knowledge representation with deep reinforcement learning. Firstly, it uses the knowledge representation learning method to map the knowledge graph to the vector space containing the semantic information of the triples, and establishes a reinforcement learning environment in the space. Then, it trains through the single-step optimization strategy network and the multi-step reasoning strategy network to enable the reinforcement learning agent to efficiently mine the reasoning rules and complete the reasoning in the process interacting with the environment. According to experimental results on public datasets, compared with state-of-the-art methods, the proposed method achieves better performance in reasoning tasks for large-scale datasets.
Keywords:knowledge reasoning  deep reinforcement learning  knowledge representation  path control  rule mining  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号