首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于视频分类的码率自适应算法
引用本文:陈梓晗,叶进,肖庆宇. 一种基于视频分类的码率自适应算法[J]. 计算机工程, 2021, 47(12): 118-121,130. DOI: 10.19678/j.issn.1000-3428.0059790
作者姓名:陈梓晗  叶进  肖庆宇
作者单位:广西大学 计算机与电子信息学院,南宁 530004
基金项目:国家自然科学基金(6176030);广西自然科学基金(2018JJA170209)。
摘    要:流媒体的码率自适应算法依据网络状态动态调节视频块的码率,提升用户体验质量,但忽略了视频类型的差异对用户体验质量的影响,导致算法性能下降。提出区分视频类型特征的码率选择算法C-ABR。设计相应的用户体验质量效用函数,使用强化学习算法训练模型A3C,提升用户体验质量。实验结果说明,相对于典型的码率自适应算法Pensieve和MPC,C-ABR算法用户体验质量分别提升22.7%和50.4%。

关 键 词:体验质量  强化学习  码率自适应算法  流媒体  激励函数
收稿时间:2020-10-21
修稿时间:2020-12-05

An Adaptive Bitrate Algorithm Based on Video Classification
CHEN Zihan,YE Jin,XIAO Qingyu. An Adaptive Bitrate Algorithm Based on Video Classification[J]. Computer Engineering, 2021, 47(12): 118-121,130. DOI: 10.19678/j.issn.1000-3428.0059790
Authors:CHEN Zihan  YE Jin  XIAO Qingyu
Affiliation:School of Computer and Electronics Information, Guangxi University, Nanning 530004, China
Abstract:The Adaptive Bitrate(ABR) algorithms for streaming media can dynamically adjust the bitrate of video blocks according to network status, and thus improve the user Quality of Experience(QoE).However, the existing algorithms usually ignore the impact of video types on the QoE, resulting in performance degradation.This paper proposes a bitrate selection algorithm, C-ABR, which adapts to different types of videos.Corresponding utilization functions of user experience quality are designed, and the A3C model is trained by using the reinforcement learning algorithm to improve the QoE.The experimental results show that compared with the current typical bitrate self-adaption algorithms, including Pensieve and MPC, the C-ABR method improves the QoE by 22.7% and 50.4%, respectively.
Keywords:Quality of Experience(QoE)  reinforcement learning  Adaptive Bitrate(ABR) algorithm  stream media  reward function  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程》浏览原始摘要信息
点击此处可从《计算机工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号