首页 | 本学科首页   官方微博 | 高级检索  
     

基于全卷积编解码网络的单目图像深度估计
引用本文:夏梦琪,郝琨,赵璐. 基于全卷积编解码网络的单目图像深度估计[J]. 计算机工程与应用, 2021, 57(14): 231-236. DOI: 10.3778/j.issn.1002-8331.2004-0432
作者姓名:夏梦琪  郝琨  赵璐
作者单位:天津城建大学 计算机与信息工程学院,天津 300384
摘    要:针对传统方法在单目图像深度估计时精度低、速度慢等问题,提出一种全卷积编码-解码网络模型,该模型将稀疏的深度样本集和RGB图像作为输入,编码层由Resnet和一个卷积层组成,解码层由两个上采样层和一个双线性上采样层组成,上采样层采用上卷积模块和上投影模块交叉使用,有效降低了棋盘效应并保留了预测深度图像的边缘信息.同时,模...

关 键 词:单目图像深度估计  卷积神经网络  深度残差网络  稀疏深度测量

Monocular Image Depth Estimation Based on Fully Convolutional Encoder-Decoder Network
XIA Mengqi,HAO Kun,ZHAO Lu. Monocular Image Depth Estimation Based on Fully Convolutional Encoder-Decoder Network[J]. Computer Engineering and Applications, 2021, 57(14): 231-236. DOI: 10.3778/j.issn.1002-8331.2004-0432
Authors:XIA Mengqi  HAO Kun  ZHAO Lu
Affiliation:School of Computer and Information Engineering, Tianjin Chengjian University, Tianjin 300384, China
Abstract:Aiming at the problems of low accuracy and slow speed in the depth estimation of monocular images by traditional methods, a fully convolutional encoding-decoding network model is proposed, which takes the sparse depth sample set and RGB image as input. The encoder layer is composed of Resnet and a convolution layer. The decoder layer is composed of four up-sampling layers and a bilinear up-sampling layer. The up-sampling layer uses the up-convolution module and the up-projection module to cross use, which effectively reduces the chessboard effect and retains the predicted depth. At the same time, full convolution is used in the model to reduce the parameters and improve the prediction speed. The validity and superiority of the network model are verified on the NYU-Depth-v2 dataset. The experimental results show that compared with the multi-scale convolution neural network, the accuracy of the model is improved by about 4% on [δ<1.25], and the RMSE error index is reduced by about 11%; compared with the RGB image alone, the RMSE error is reduced by about 26% when 100 spatial random depth samples are added.
Keywords:monocular image depth estimation  convolution neural network  depth residual network  sparse depth measurement  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号