首页 | 本学科首页   官方微博 | 高级检索  
     

基于PYNQ框架的深度卷积特征异构跟踪系统
引用本文:崔洲涓,安军社,陈长龙,崔天舒. 基于PYNQ框架的深度卷积特征异构跟踪系统[J]. 计算机工程与应用, 2021, 57(4): 120-126. DOI: 10.3778/j.issn.1002-8331.1911-0351
作者姓名:崔洲涓  安军社  陈长龙  崔天舒
作者单位:1.中国科学院 国家空间科学中心 复杂航天系统电子信息技术重点实验室,北京 1001902.中国科学院大学,北京 100049
基金项目:中国科学院复杂航天系统电子信息技术重点实验室基金
摘    要:针对深度卷积特征目标跟踪算法中特征提取计算量大、速度慢、难以在嵌入式平台上应用的问题,提出了一种基于PYNQ框架的目标跟踪方案,并将其部署在Zynq异构平台.首先设计基于深度卷积特征的目标跟踪算法;根据算法的特点进行软硬件划分,完成片上系统的构建;然后针对深度卷积特征提取的计算过程进行并行优化,导出加速IP核;最后在P...

关 键 词:PYNQ框架  目标跟踪  深度卷积特征  Zynq  加速

Deep Convolutional Features Heterogeneous Tracking System Based on PYNQ Framework
CUI Zhoujuan,AN Junshe,CHEN Changlong,CUI Tianshu. Deep Convolutional Features Heterogeneous Tracking System Based on PYNQ Framework[J]. Computer Engineering and Applications, 2021, 57(4): 120-126. DOI: 10.3778/j.issn.1002-8331.1911-0351
Authors:CUI Zhoujuan  AN Junshe  CHEN Changlong  CUI Tianshu
Affiliation:1.Key Laboratory of Electronics and Information Technology for Space Systems, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China2.University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:In order to solve the problems of feature extraction in deep convolutional features visual tracking algorithm, such as large amount of computation, slow speed and difficulty in application on embedded platform, a visual tracking scheme based on PYNQ framework is proposed and deployed on Zynq heterogeneous platform. Firstly, a visual tracking algorithm based on deep convolutional features is designed. Then, according to the characteristics of the algorithm, the software and hardware are divided to complete the system-on-chip construction. Then, the calculation process of deep convolutional features extraction is optimized in parallel and derived as an accelerated IP core. Finally, via Jupyter Notebooks in the PYNQ framework, the accelerated IP core can be used as a hardware coprocessor to achieve data interaction from the bottom to the top. The experimental results show that the algorithm achieves good tracking accuracy on the benchmark OTB-2015 and UAV123. The tracking speed is up to 30 times higher than when the accelerated IP core is not integrated. Under the circumstance of considering the tracking robustness, the heterogeneous tracking system has high execution efficiency, good portability and engineering application value.
Keywords:PYNQ framework  object tracking  deep convolutional features  Zynq  accelerate  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号