首页 | 本学科首页   官方微博 | 高级检索  
     

基于OBLFOA-PP-BC的围岩稳定性二维评价模型
引用本文:陈光耀,汪明武,金菊良. 基于OBLFOA-PP-BC的围岩稳定性二维评价模型[J]. 长江科学院院报, 2022, 39(4): 140-148. DOI: 10.11988/ckyyb.20210010
作者姓名:陈光耀  汪明武  金菊良
作者单位:合肥工业大学 土木与水利工程学院,合肥 230009
基金项目:国家重点研发计划项目(2017YFC1502405);;国家自然科学基金项目(41172274);
摘    要:投影寻踪是一种解决复杂围岩稳定性评价问题较为有效的不确定性分析方法,但其结果受投影方向的影响和控制.为寻求最优的投影方向向量和体现寻优过程的不确定性,探讨了寻求最佳投影方向向量的反向学习果蝇优化算法,进而利用该算法改进围岩稳定性投影寻踪评价模型.针对投影寻踪方法常出现分级阈值难以划分情形,利用实测样本的最佳投影值,通过...

关 键 词:围岩稳定性  反向学习果蝇算法(OBLFOA)  投影寻踪  逆向云  模糊熵
收稿时间:2021-01-03
修稿时间:2021-03-08

Two-dimensional Evaluation Model of Surrounding Rock Stability Based on OBLFOA-PP-BC
CHEN Guang-yao,WANG Ming-wu,JIN Ju-liang. Two-dimensional Evaluation Model of Surrounding Rock Stability Based on OBLFOA-PP-BC[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(4): 140-148. DOI: 10.11988/ckyyb.20210010
Authors:CHEN Guang-yao  WANG Ming-wu  JIN Ju-liang
Affiliation:School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei 230009, China
Abstract:Projection pursuit is an efficient uncertainty analysis method in solving complex stability problems for surrounding rock. Its result is affected and controlled by the projection direction. To find an optimum projection direction vector and reflect the uncertainty of the process, we adopted an opposition-based learning fruit fly optimization algorithm (OBLFOA) to modify the projection pursuit evaluation model for surrounding rock stability. The classification threshold of projection pursuit is difficult to be divided in some special cases. In view of this, we constructed the normal cloud models for different grades of surrounding rock by using the optimal projection value according to the optimum projection value of measured samples. To determine the reliability of the model evaluation results and the fuzziness of the evaluation process, we introduced the fuzzy entropy E as the auxiliary parameter with the evaluation result L forming a two-dimensional evaluation mode (L, E). Since the evaluation indexes of surrounding rock stability are varied and the evaluation system is not unique, we selected two cases with different evaluation index systems for application and compared with other methods. Results indicated that the proposed model is feasibile and effective and the evaluation results are objective and accurate.
Keywords:surrounding rock stability  opposition-based learning fruit fly optimization algorithm  projection pursuit  backward cloud model  fuzzy entropy  
本文献已被 万方数据 等数据库收录!
点击此处可从《长江科学院院报》浏览原始摘要信息
点击此处可从《长江科学院院报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号