首页 | 本学科首页   官方微博 | 高级检索  
     

新的稀疏支持向量回归机算法及实验研究
引用本文:陈晓峰,王士同,曹苏群,马培勇. 新的稀疏支持向量回归机算法及实验研究[J]. 计算机工程与应用, 2008, 44(36): 24-28. DOI: 10.3778/j.issn.1002-8331.2008.36.006
作者姓名:陈晓峰  王士同  曹苏群  马培勇
作者单位:江南大学,信息学院,江苏,无锡,214122;江南大学,信息学院,江苏,无锡,214122;淮阴工学院,机械系,江苏,淮安,223001;中国科学技术大学,工程科学学院,合肥,230026
基金项目:国家自然科学基金 , 国家高技术研究发展计划(863计划)  
摘    要:支持向量回归机是一种解决回归问题的重要方法,其预测速度与支持向量的稀疏性成正比。为了改进支持向量回归机的稀疏性,提出了一种直接稀疏支持向量回归算法DSKR(Direct Sparse Kernel Support Vector Regression),用于构造稀疏性支持向量回归机。DSKR算法对ε-SVR(ε-Support Vector Regression)增加一个非凸约束,通过迭代优化的方式,得到稀疏性好的支持向量回归机。在人工数据集和真实世界数据集上研究DSKR算法的性能,实验结果表明,DSKR算法可以通过调控支持向量的数目,提高支持向量回归机的稀疏性,且具有较好的鲁棒性。

关 键 词:支持向量回归机  核方法  稀疏核学习
收稿时间:2008-07-07
修稿时间:2008-10-10 

Novel sparse Support Vector Regression and its experimental study
CHEN Xiao-feng,WANG Shi-tong,CAO Su-qun,MA Pei-yong. Novel sparse Support Vector Regression and its experimental study[J]. Computer Engineering and Applications, 2008, 44(36): 24-28. DOI: 10.3778/j.issn.1002-8331.2008.36.006
Authors:CHEN Xiao-feng  WANG Shi-tong  CAO Su-qun  MA Pei-yong
Affiliation:1.School of Information,Jiangnan University,Wuxi,Jiangsu 214122,China 2.Department of Mechanical Engineering,Huaiyin Institute of Technology,Huaian,Jiangsu 223001,China 3.School of Engineering Science,University of Science and Technology of China,Hefei 230026,China
Abstract:Support Vector Regression is an important kind of method for regression problems.The predicting speed of Support Vector Regression is proportional to its sparseness.In order to increase sparseness of support vector regression,in this paper,a sparse support vector regression method named DSKR(Direct Sparse Kernel Support Vector Regression) is proposed to construct sparse Support Vector Regression.DSKR adds a non-convex constraint to ε-SVR (ε-Support Vector Regression),and then obtains Support Vector Regression with better sparseness using iterative optimization.Experimental comparisons are made with several Support Vector Regression methods on both synthetic data sets and real-world data sets,the comparisons show that the proposed DSKR gives promising results.It can improve sparseness and adjust number of support vectors with perfect robust performance.
Keywords:Support Vector Regression(SVR)  kernel method  sparse kernel learning
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号