首页 | 本学科首页   官方微博 | 高级检索  
     

基于蚁群算法的交叉路口多相位信号配时优化
引用本文:肖业伟,黄辉先,王宸昊. 基于蚁群算法的交叉路口多相位信号配时优化[J]. 计算机工程与应用, 2008, 44(19): 241-244. DOI: 10.3778/j.issn.1002-8331.2008.19.074
作者姓名:肖业伟  黄辉先  王宸昊
作者单位:湘潭大学 信息工程学院,湖南 湘潭 411105
基金项目:湖南省教育厅科研项目 , 湘潭大学青年基金
摘    要:针对城市道路交叉口的交通流特性,提出一种交叉路口多相位配时的TSP模型,采用新的优化算法——蚁群算法(ACA)来优化交叉路口多相位配时信号,并以每周期内交叉路口车辆总延误最小作为性能指标进行仿真实验。实验表明:在相同的时间和车辆到达率的情况下,采用蚁群算法优化相位和绿信比的配时方法明显优于定时配时方法,也优于定相位优化绿信比的配时方法,降低了交叉口的车辆延误,提高了通行能力;且该算法的求解速度快,稳定性好。

关 键 词:多相位交通信号  TSP模型  蚁群算法  通行能力  
收稿时间:2007-10-09
修稿时间:2007-12-29 

Multiphase traffic signal timing optimization of intersection based on ant colony algorithm
XIAO Ye-wei,HUANG Hui-xian,WANG Chen-hao. Multiphase traffic signal timing optimization of intersection based on ant colony algorithm[J]. Computer Engineering and Applications, 2008, 44(19): 241-244. DOI: 10.3778/j.issn.1002-8331.2008.19.074
Authors:XIAO Ye-wei  HUANG Hui-xian  WANG Chen-hao
Affiliation:Institute of Information Engineering,Xiangtan University,Xiangtan,Hunan 411105,China
Abstract:Based on the character of urban traffic flow,this paper describes a multiphase traffic signal timing TSP model,and adopts a novel optimization algorithm——Ant Colony Algorithm(ACA),which optimizes the multiphase traffic signal timing of intersection,and takes simulation experiments with the least vehicle total delay of every cycle as the performance index.The experiments show that on the same time and the same vehicle arrival rate conversation,the timing method used by ACA to optimize phase and green split is better than the classical fixed-time method,and also better than the fixed-phase optimizing green split,and it can be reduced vehicle delay and improved traffic capacity in isolated intersection.The ACA can be solved problems quickly with good stability.
Keywords:multiphase traffic signal  TSP model  Ant Colony Algorithm(ACA)  expressway capacity
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号