人工微结构薄层红外探测器的研究进展(特邀) |
| |
引用本文: | 杜佳远,赵锌宇,胡新华. 人工微结构薄层红外探测器的研究进展(特邀)[J]. 红外与激光工程, 2021, 50(1): 20211002-1-20211002-8. DOI: 10.3788/IRLA20211002 |
| |
作者姓名: | 杜佳远 赵锌宇 胡新华 |
| |
作者单位: | 复旦大学 材料科学系 微纳光子结构教育部重点实验室,上海 200433 |
| |
基金项目: | 国家重点研发计划(2018YFA0306201);国家自然科学基金(11574037,61422504) |
| |
摘 要: | 薄层的红外探测材料虽然能够保持很好的均匀性,减少了红外探测时的噪音,但由于薄层红外探测材料体积偏小,限制了红外探测器的吸收。针对不同红外探测材料的特点,利用人工微结构能够有效地改善红外探测器的性能。文中介绍了增强薄层红外探测材料吸收的策略,分别是使用金属背板、金属光栅结构和非对称F-P型金属腔体结构, 它们在各自适应的场景下都能取得不错的效果。同时也简略地介绍了人工微结构调控吸收峰高和峰宽的机理。并且展示了人工微结构在几种红外探测器件上的应用。最后,提出了一种人工微结构碲镉汞红外探测器的设计,实现了在3.5~5.5 μm大气窗口内的宽频吸收, 其中吸收峰的高度为91.8%,吸收峰的相对宽度为41.8%,在大气窗口内的大部分频率,增强系数均大于6。人工微结构的发展开拓了传统红外器件的设计思路,为新型的红外器件提供了理论依据和指导。
|
关 键 词: | 人工微结构 超材料 红外探测器 |
收稿时间: | 2020-11-07 |
Research progress of artificial microstructure thin layer infrared detector (Invited) |
| |
Affiliation: | Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), Department of Materials Science, Fudan University, Shanghai 200433, China |
| |
Abstract: | The thin layer of infrared detection material guarantees the uniformity of the materials and reduces the signal noise in infrared detection. The absorption of infrared detector is limited by the thin layer of infrared detection material attributing to small volume. According to the characteristics of different infrared detection materials, artificial microstructure can effectively improve the performance of infrared detector. The strategies of enhancing the absorption of thin-layer infrared detection materials were introduced. The strategies were based on metal back plate, metal grating and asymmetric Fabry-Perot cavity. They could have an excellent performance in their own adaptive scenarios. Meanwhile, the mechanism of adjusting the absorption peak height and width by artificial microstructure was also elaborated briefly. The application of artificial microstructure in several infrared detectors was demonstrated. Finally, an artificial microstructure HgCdTe infrared detector was designed, which could achieve broadband absorption in 3.5-5.5 μm atmospheric window. The absorption peak reached 91.8% and the relative peak width was 41.8%. In most of frequency in the atmospheric window, the absorption enhancement is higher than 6. The development of artificial microstructure opens up the design idea of traditional infrared devices, and provides theoretical basis and guidance for new infrared devices. |
| |
Keywords: | |
|
| 点击此处可从《红外与激光工程》浏览原始摘要信息 |
|
点击此处可从《红外与激光工程》下载免费的PDF全文 |