首页 | 本学科首页   官方微博 | 高级检索  
     


A Primal-Dual SGD Algorithm for Distributed Nonconvex Optimization
X. L. Yi, S. J. Zhang, T. Yang, T. Y. Chai, and K. H. Johansson, “A primal-dual SGD algorithm for distributed nonconvex optimization,” IEEE/CAA J. Autom. Sinica, vol. 9, no. 5, pp. 812–833, May 2022. doi: 10.1109/JAS.2022.105554
Authors:Xinlei Yi  Shengjun Zhang  Tao Yang  Tianyou Chai  Karl Henrik Johansson
Affiliation:1. Division of Decision and Control Systems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, and also affiliated with the DigitalFutures, Stockholm 10044, Sweden;2. Department of Electrical Engineering, University of North Texas, Denton, TX 76203 USA;3. State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, China
Abstract:The distributed nonconvex optimization problem of minimizing a global cost function formed by a sum of n local cost functions by using local information exchang...
Keywords:Distributed nonconvex optimization   linear speedup   Polyak-Łojasiewicz (P-Ł) condition   primal-dual algorithm   stochastic gradient descent
点击此处可从《IEEE/CAA Journal of Automatica Sinica》浏览原始摘要信息
点击此处可从《IEEE/CAA Journal of Automatica Sinica》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号