首页 | 本学科首页   官方微博 | 高级检索  
     

基于多级动态主元分析的电熔镁炉异常工况诊断
引用本文:刘强, 孔德志, 郎自强. 基于多级动态主元分析的电熔镁炉异常工况诊断. 自动化学报, 2021, 47(11): 2570−2577 doi: 10.16383/j.aas.c190313
作者姓名:刘强  孔德志  郎自强
作者单位:1.东北大学流程工业综合自动化国家重点实验室 沈阳 110819 中国;;2.英国谢菲尔德大学自动控制和系统工程系 谢菲尔德市 S1 3JD 英国
基金项目:国家自然科学基金(61991401, U20A20189, 61673097, 61833004), 兴辽英才计划项目(XLYC1907049, XLYC1808001), 中央高校基本科研业务费(N180802004)资助
摘    要:电熔镁熔炼过程中的异常工况(如半熔化工况)直接影响产品质量、威胁人员和生产安全, 有必要及时诊断. 但与异常直接相关的超高温熔池温度(>2850 ℃)难以利用温度传感器检测, 目前现场主要依靠工人在定期巡检时人眼观察炉壁来诊断, 工作强度大、安全度低、诊断不及时. 针对上述问题, 本文提出一种炉体动态图像驱动的电熔镁炉异常工况实时诊断方法. 结合电熔镁炉熔炼各区域温度分布的空间特征、正常工况下熔炼温度变化和水雾扰动引入的图像时序特征、以及异常工况下温度异常区域持续发亮扩大的特征, 在对炉体动态图像进行空间多级划分的基础上, 提出了一种多级动态主元分析(Multi-level dynamic principal component analysis, MLDPCA) 动态图像分块建模方法. 在此基础上, 提出基于MLDPCA的逐级诊断方法与基于贡献图的异常定位方法. 最后, 采用某电熔镁生产现场的实际图像进行方法验证, 结果表明了所提方法的有效性.

关 键 词:电熔镁炉   异常工况诊断   多级动态主元分析   时序图像建模
收稿时间:2019-04-22

Multi-level Dynamic Principal Component Analysis for Abnormality Diagnosis of Fused Magnesia Furnaces
Liu Qiang, Kong De-Zhi, Lang Zi-Qiang. Multi-level dynamic principal component analysis for abnormality diagnosis of fused magnesia furnaces. Acta Automatica Sinica, 2021, 47(11): 2570−2577 doi: 10.16383/j.aas.c190313
Authors:LIU Qiang  KONG De-Zhi  LANG Zi-Qiang
Affiliation:1. State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, China;;2. Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield S1 3JD, UK
Abstract:The abnormalities during the melting process of fused magnesia furnace (FMF) such as semimolten situation may significantly affect the product quality, the safety of personnel and manufacturing process. The abnormal condition diagnosis deserves more attentions. However, the ultra-high temperature within the melting zone of the FMF is not measurable, that makes the diagnosis of FMF abnormality be difficult. The practitioners can only perform occasional visual inspections which often fail to detect the abnormalities in time. In order to resolve this challenge, this paper proposes a novel dynamic image analysis based real-time abnormality diagnosis method for the FMF. The proposed method exploits the spatial and temporal characteristics of temperature fluctuation in FMF in normal condition as well as the partial glowing of the furnace wall and continuous expanding of the glowing area in abnormal conditions. In order to extract these spatial and temporal features from the dynamic images, a new multi-level dynamic principal component analysis (MLDPCA) algorithm is developed. A hierarchical monitoring method is then proposed to perform the abnormality diagnosis and locate the abnormality by using the MLDPCA based contribution plot. The application result on a practical FMF using the collected field images has demonstrated the effectiveness of the proposed method.
Keywords:Fused magnesia furnace  abnormality diagnosis  multilevel dynamic principal component analysis  dynamic image modeling
点击此处可从《自动化学报》浏览原始摘要信息
点击此处可从《自动化学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号