首页 | 本学科首页   官方微博 | 高级检索  
     

一种利用模糊逻辑改进FastSLAM 2.0的方法
引用本文:夏益民,杨宜民. 一种利用模糊逻辑改进FastSLAM 2.0的方法[J]. 计算机工程与应用, 2010, 46(33): 233-235. DOI: 10.3778/j.issn.1002-8331.2010.33.067
作者姓名:夏益民  杨宜民
作者单位:广东工业大学 自动化学院,广州 510006
摘    要:FastSLAM算法采用固定样本数目,当移动机器人状态不确定性很高时,算法效率较低,并且重采样步骤容易导致样本耗尽的问题,采用模糊逻辑来动态调整粒子数目,并采用自适应重采样只在需要时才采样。理论分析和仿真结果表明,改进后的算法具有更高的估计精度和更好的连贯性。

关 键 词:快速同步定位与地图创建(FastSLAM)  重采样  模糊逻辑  
收稿时间:2009-04-01
修稿时间:2009-6-1 

Improved FastSLAM 2.0 algorithm based on fuzzy logic
XIA Yi-min,YANG Yi-min. Improved FastSLAM 2.0 algorithm based on fuzzy logic[J]. Computer Engineering and Applications, 2010, 46(33): 233-235. DOI: 10.3778/j.issn.1002-8331.2010.33.067
Authors:XIA Yi-min  YANG Yi-min
Affiliation:School of Automation,Guangdong University of Technology,Guangzhou 510006,China
Abstract:In order to mend the problem of FastSLAM algorithm, such as adopting fixed sample number which results in the low efficiency of the algorithm when the state uncertainty of mobile robot is quite high, and the sample depletion is brought on by the resample step,this paper adopts fuzzy logic to adjust the number of particles dynamically and only resamples when it is necessary.Theoretical analysis and simulation experiments show that the algorithm has higher estimation accuracy and consistency.
Keywords:Fast Simultaneous Localization And Map building(SLAM)  resample  fuzzy logic
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号