首页 | 本学科首页   官方微博 | 高级检索  
     

广义回归神经网络的改进及在交通预测中的应用
引用本文:伊良忠,章超,裴峥. 广义回归神经网络的改进及在交通预测中的应用[J]. 山东大学学报(工学版), 2013, 43(1): 9-14. DOI: 10.6040/j.issn.1672-3961.3.2012.047
作者姓名:伊良忠  章超  裴峥
作者单位:1. 四川警察学院计算机科学与技术系, 四川 泸州 646000; 2. 四川警察学院道路交通管理系, 四川 泸州 646000;3. 西华大学数学与计算机学院, 四川 成都 610039
基金项目:国家自然科学基金资助项目(61175055,61105059);四川省科技支撑计划资助项目(2012GZ0019,2011FZ051)
摘    要:本研究基于k近邻的方法通过网络性能评价指标来对平滑因子进行选择确定。通过k近邻法找出使得网络性能评价最好的平滑因子,不再仅依赖于一个均方误差数值,而根据均方误差组的排序来选择最优的平滑因子。该算法能够在保持较好的预测效果的前提下解决因数据波动性大而最终得不到最优平滑因子的难题。通过预测交通数据的实验验证了算法的有效性。结果表明通过k近邻方法得到的最优平滑因子会使网络预测误差降至最小。

关 键 词:广义回归神经网络  k近邻法  平滑因子  
收稿时间:2012-12-05

A modified general regression neural network with its application in traffic prediction
YI Liang-zhong,ZHANG Chao,PEI Zheng. A modified general regression neural network with its application in traffic prediction[J]. Journal of Shandong University of Technology, 2013, 43(1): 9-14. DOI: 10.6040/j.issn.1672-3961.3.2012.047
Authors:YI Liang-zhong  ZHANG Chao  PEI Zheng
Affiliation:1. Department of Computer Science and Technology, Sichuan Police College, Luzhou 646000, China;2. Department of Road Traffic Management, Sichuan Police College, Luzhou 646000, China;3. School of Mathematic & Computer Engineering, Xihua University, Chengdu 610039, China
Abstract:Based on the method of k nearest neighbors algorithm, the optimum smoothing parameter was found by means of network performance evaluation. The approach depended not only on the value of mean square error, but also could sort the mean square error without affecting the forcasting performance. The optimum smoothing parameter was difficult to be found because of the volatility of the data solved by the modified algorithm. Finally, a traffic forcasting experiment was provided to analyze the effectiveness of the proposed algorithm. The results revealed that the optimum smoothing parameter found by means of k nearest neighbors could obtain the minimum prediction error.
Keywords:the general regression neural network  k nearest neighbors  the smoothing parameter  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《山东大学学报(工学版)》浏览原始摘要信息
点击此处可从《山东大学学报(工学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号