首页 | 本学科首页   官方微博 | 高级检索  
     

基于微粒群优化的模糊C-均值聚类彩色图像分割
引用本文:黄力明. 基于微粒群优化的模糊C-均值聚类彩色图像分割[J]. 计算机工程与应用, 2008, 44(29): 184-187. DOI: 10.3778/j.issn.1002-8331.2008.29.052
作者姓名:黄力明
作者单位:镇江高等专科学校,电子信息系,江苏,镇江,212003
摘    要:模糊C-均值聚类算法广泛用于图像分割,但存在聚类性能受类中心初始化影响,且计算量大等问题。为此,提出了一种基于微粒群的模糊C-均值聚类图像分割算法,该方法利用微粒群较强的搜索能力搜索聚类中心。由于搜索聚类中心是按密度进行,计算量小,故可以大幅提高模糊C-均值算法的计算速度。实验表明,这种方法可以使模糊聚类的速度得到明显提高,实现图像的快速分割。

关 键 词:模糊C-均值聚类  彩色图像分割  聚类中心  微粒群优化算法  鲁棒性
收稿时间:2007-11-21
修稿时间:2008-2-25 

Fuzzy C-means clustering based on particle swarm optimization algorithm for color image segmentation
HUANG Li-ming. Fuzzy C-means clustering based on particle swarm optimization algorithm for color image segmentation[J]. Computer Engineering and Applications, 2008, 44(29): 184-187. DOI: 10.3778/j.issn.1002-8331.2008.29.052
Authors:HUANG Li-ming
Affiliation:Department of Electronics and Information,Zhenjiang College,Zhenjiang,Jiangsu 212003,China
Abstract:Fuzzy C-means(FCM) clustering algorithm has been widely used in image segmentation.Because of the heavy computing burden of the Fuzzy C-Means clustering and the disadvantage that clustering performance is affected by initial centers of FCM.This paper proposes a method of Fuzzy C-means Clustering based on Particle Swarm Optimization algorithm for image segmentation.As the search is based on density of the cluster center,the computational load is small,thus,the computing speed of FCM can be improved.Experimental results show that this method can make a marked improvement in the speed of fuzzy clustering and can segment the image quickly and effectively.
Keywords:fuzzy c-means cluster  color image segmentation  clustering center  particle swarm optimization algorithm  robust
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号