首页 | 本学科首页   官方微博 | 高级检索  
     

基于高斯过程与批量汤普森抽样的动态定价策略
引用本文:毕文杰,王荣. 基于高斯过程与批量汤普森抽样的动态定价策略[J]. 计算机工程与应用, 2022, 58(16): 303-311. DOI: 10.3778/j.issn.1002-8331.2012-0493
作者姓名:毕文杰  王荣
作者单位:中南大学 商学院,长沙 410083
基金项目:国家自然科学基金重大研究计划(91646115);
摘    要:考虑短期内需求不确定情况下同类型产品的定价策略研究,引入高斯过程进行需求函数的学习,利用批量汤普森算法建立基于探索-利用的两阶段学习和决策过程的定价模型。在利用提出的GP-PTS(Gaussian processparallel Thompson sampling)算法完成数值实验和某平台出行的真实数据应用后得出的结果表明:算法的精准度取决于特征是否完备,若给定一个先验且产品特征完备时,基于GP-PTS算法模拟出来的价格会取得比目前平台价格策略更好的收益,为企业在短期内进行定价决策提供良好借鉴。

关 键 词:动态定价  高斯过程  汤普森抽样  批量贝叶斯优化

Dynamic Pricing Strategy Based on Gaussian Process and Parallel Thompson Sampling
BI Wenjie,WANG Rong. Dynamic Pricing Strategy Based on Gaussian Process and Parallel Thompson Sampling[J]. Computer Engineering and Applications, 2022, 58(16): 303-311. DOI: 10.3778/j.issn.1002-8331.2012-0493
Authors:BI Wenjie  WANG Rong
Affiliation:Business School, Central South University, Changsha 410083, China
Abstract:Considering the research on pricing strategies of the same type of products in the case of uncertain demand in the short term, this paper introduces Gaussian process to learn the demand function, and uses parallel Thompson algorithm to establish a two-stage learning and decision-making process pricing model based on exploration-exploitation trade-off. After using the proposed GP-PTS algorithm to complete the numerical experiment and the real data application, the results show that the accuracy of the algorithm depends on whether the features are complete. If a prior is given and the product features are complete, the price simulated by GP-PTS algorithm will obtain better benefits than the current platform pricing strategy, and will provide a good reference for enterprises to make pricing decisions in the short term.
Keywords:dynamic pricing   Gaussian process   Thompson sampling   parallel Bayesian optimization  
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号