首页 | 本学科首页   官方微博 | 高级检索  
     

磁性Fe3O4@SiO2@介孔SiO2空心微球的制备及漆酶固定化
引用本文:李群艳,孙路瑶,常其飞,周运炉. 磁性Fe3O4@SiO2@介孔SiO2空心微球的制备及漆酶固定化[J]. 化工进展, 2022, 41(10): 5494-5500. DOI: 10.16085/j.issn.1000-6613.2021-2495
作者姓名:李群艳  孙路瑶  常其飞  周运炉
作者单位:北京工业大学材料与制造学部,北京100124
基金项目:国家重点研发计划(2I009011201709)
摘    要:磁性介孔二氧化硅复合材料作为酶固定化载体具有优异的酶固定化性能和良好的磁分离性能,受到国内外学术界广泛关注。本文在自制的β-FeOOH空心微球表面上包覆致密的SiO2保护层,在酸性条件下以P123为模板剂,十六烷基三甲基溴化铵(CTAB)为辅助导向剂成功制备出了磁性β-FeOOH@SiO2@介孔SiO2空心复合微球,最后在还原气氛下煅烧得到Fe3O4@SiO2@介孔SiO2空心微球。结果表明,所制备的Fe3O4@SiO2@介孔SiO2微球空心结构未坍塌,具有规整的球形结构,介孔SiO2壳层(平均厚度约为11nm)均匀地包覆在β-FeOOH@SiO2中空微球表面。伴随着CTAB量的增加,微球的最可几孔径由4.30nm减小到3.19nm,比表面积从376m2/g升高到640m2/g,孔容从0.36cm3/g升高到0.56cm3/g。复合微球的饱和磁化强度为11.3emu/g,矫顽力为111.5Oe,外加磁场作用下可以实现样品的快速分离,且样品的再分散性良好。当介孔孔径为4.30nm时,Fe3O4@SiO2@介孔SiO2空心复合微球漆酶固定量高达234mg/g。固定化漆酶在不同pH、温度下的活性显著优于游离酶。

关 键 词:二氧化硅  磁性  空心  固定化  复合材料
收稿时间:2021-12-05

Synthesis and laccase immobilization of magnetic Fe3O4@SiO2@mesoporous SiO2 hollow microspheres
LI Qunyan,SUN Luyao,CHANG Qifei,ZHOU Yunlu. Synthesis and laccase immobilization of magnetic Fe3O4@SiO2@mesoporous SiO2 hollow microspheres[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5494-5500. DOI: 10.16085/j.issn.1000-6613.2021-2495
Authors:LI Qunyan  SUN Luyao  CHANG Qifei  ZHOU Yunlu
Affiliation:Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
Abstract:The magnetic mesoporous silica composite material as the enzyme immobilization carrier has excellent enzyme immobilization performance and good magnetic separation performance, and has received extensive attention from academic circles at home and abroad. The surface of the self-made β-FeOOH hollow microspheres was coated with a dense SiO2 protective layer. Under acidic conditions, β-FeOOH@SiO2@mesoporous SiO2 hollow composite microspheres were successfully prepared by using P123 as a template and cetyltrimethylammonium bromide (CTAB) as an auxiliary directing agent. Magnetic β-FeOOH@SiO2@mesoporous SiO2 hollow composite microspheres were finally calcined in a reducing atmosphere to obtain Fe3O4@SiO2@mesoporous SiO2 hollow microspheres. The results showed that the hollow structure of the prepared Fe3O4@SiO2@ mesoporous SiO2 microspheres was not collapsed and had a regular spherical structure. The mesoporous SiO2 shell (with a average thickness of about 11nm) was uniformly coated on β-FeOOH@SiO2 hollow microsphere surface. As the amount of CTAB increases, the most probable pore size of the microspheres decreased from 4.30nm to 3.19nm, the specific surface area increased from 376m2/g to 640m2/g, and the pore volume increased from 0.36cm3/g to 0.56cm3/g. The saturation magnetization of the composite microspheres was 11.3emu/g, and the coercivity was 111.5Oe. The rapid separation of the samples could be achieved under the action of an external magnetic field, and the redispersibility of the samples was good. When the mesoporous pore size was 4.30nm, the amount of laccase immobilized in Fe3O4@SiO2@mesoporous SiO2 hollow composite microsphere was as high as 234mg/g. The activity of immobilized laccase at different pH and temperature was significantly better than that of free laccase.
Keywords:silica  magnetic property  hollow  immobilization  composites  
本文献已被 万方数据 等数据库收录!
点击此处可从《化工进展》浏览原始摘要信息
点击此处可从《化工进展》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号