Investigation mechanism of DEA as an activator on aqueous MEA solution for postcombustion CO2 capture |
| |
Authors: | Helei Liu Moxia Li Xiao Luo Zhiwu Liang Raphael Idem Paitoon Tontiwachwuthikul |
| |
Affiliation: | 1. Clean Energy Technologies Research Institute (CETRI), University of Regina, Saskatchewan, Regina, S4S 0A2, Canada;2. Joint International Center for CO2 Capture and Storage (iCCS), Provincial Hunan Key Laboratory for Cost‐effective Utilization of Fossil Fuel Aimed at Reducing Carbon‐dioxide Emissions, College of Chemistry and Chemical Engineering, Hunan University, Changsha, PR China |
| |
Abstract: | In this work, Diethanolamine (DEA) was considered as an activator to enhance the CO2 capture performance of Monoethanolamine (MEA). The addition of DEA into MEA system was expected to improve disadvantages of MEA on regeneration heat, degradation, and corrosivity. To understand the reaction mechanism of blended MEA‐DEA solvent and CO2, 13C nuclear magnetic resonance (NMR) technique was used to study the ions (MEACOO‐, DEACOO–, MEA, DEA, MEAH+, DEAH+, , ) speciation in the blended MEA‐DEA‐CO2‐H2O systems with CO2 loading range from 0 to 0.7 mol CO2/mol amine at the temperature of 301 K. The different ratios of MEA and DEA (MEA: DEA = 2.0:0, 1.5:0.5, 1.0:1.0, and 0:2.0) were studied to comprehensively investigate the role of DEA in the system of MEA‐DEA‐CO2‐H2O. The results revealed that DEA performs the coordinative role at the low CO2 loading and the competitive role at high CO2 loading. Additionally, the mechanism was also proposed to interpret the reaction process of the blended solvent with CO2. © 2018 American Institute of Chemical Engineers AIChE J, 64: 2515–2525, 2018 |
| |
Keywords: | mechanism CO2 absorption blended solvent NMR |
|
|