首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进的粒子群算法优化反向传播神经网络的热舒适度预测模型
引用本文:张 玲,王 玲,吴 桐. 基于改进的粒子群算法优化反向传播神经网络的热舒适度预测模型[J]. 计算机应用, 2014, 34(3): 775-779. DOI: 10.11772/j.issn.1001-9081.2014.03.0775
作者姓名:张 玲  王 玲  吴 桐
作者单位:1. 湖南大学 电气与信息工程学院,长沙4100822. 63893部队,河南 洛阳471000
摘    要:针对热舒适度预测是一个复杂的非线性过程,不便于空调的实时控制应用的问题,提出一种基于改进的粒子群优化(PSO)算法优化反向传播(BP)神经网络的热舒适度预测模型。这一预测模型通过采用PSO算法优化BP神经网络的初始权值和阈值,改善了传统BP算法收敛速度慢及对网络初始值敏感的问题。同时,针对标准PSO算法易出现早熟收敛、局部寻优能力弱等缺点,提出了相应改进策略,进一步提高了PSO优化BP神经网络的能力。实验结果表明:与传统BP模型和标准PSO-BP模型相比,基于改进的PSO-BP算法的热舒适度预测模型具有更高的预测精度和更快的收敛速度。

关 键 词:热舒适度  预测  反向传播神经网络  粒子群算法  模型  
收稿时间:2013-07-25
修稿时间:2013-09-17

Thermal comfort prediction model based on improved particle swarm optimization-back propagation neural network
ZHANG Ling WANG Ling WU Tong. Thermal comfort prediction model based on improved particle swarm optimization-back propagation neural network[J]. Journal of Computer Applications, 2014, 34(3): 775-779. DOI: 10.11772/j.issn.1001-9081.2014.03.0775
Authors:ZHANG Ling WANG Ling WU Tong
Affiliation:1. College of Electrical and Information Engineering, Hunan University, Changsha Hunan 410082, China;
2. No.63893 Troops, Luoyang Henan 471000, China
Abstract:Aiming at the problem that thermal comfort prediction, which is a complicated nonlinear process, can not be applied to real-time control of air conditioning directly, this paper proposed a thermal comfort prediction model based on the improved Particle Swarm Optimization-Back Propagation (PSO-BP) neural network algorithm. By using PSO algorithm to optimize initial weights and thresholds of BP neural network, the problem that traditional BP algorithm converges slowly and is sensitive to the initial value of the network was improved in this prediction model. Meanwhile, for the standard PSO algorithm prone to premature convergence, weak local search capabilities and other shortcomings, this paper put forward some improvement strategies to further enhance the PSO-BP neural network capabilities. The experimental results show that, the thermal comfort prediction model based on the improved PSO-BP neural network algorithm has faster algorithm converges and higher prediction accuracy than the traditional BP model and standard PSO-BP model.
Keywords:thermal comfort   prediction   Back Propagation (BP) neural network   Particle Swarm Optimization (PSO)   model
本文献已被 CNKI 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号