Reactive compatibilization of poly(styrene‐ran‐acrylonitrile)/poly(ethylene) blends through the acid–epoxy reaction |
| |
Authors: | Amardeep Gill Celestine Hong Daniel Gromadzki Milan Marić |
| |
Affiliation: | Department of Chemical Engineering, McGill University, Montreal, QC, Canada |
| |
Abstract: | Two families of acid functional styrene/acrylonitrile copolymers (SAN) for application as dispersed phase barrier materials in poly(ethylene) (PE) were studied. One type is SAN made by nitroxide mediated polymerization (NMP), which was subsequently chain extended with a styrene/tert‐butyl acrylate (S/tBA) mixture to provide a block copolymer (number average molecular weight Mn = 36.6 kg mol?1 and dispersity ? = 1.34, after which the tert‐butyl protecting groups were converted to acid groups (SAN‐b‐S/AA). The other acid functional SAN is made by conventional radical terpolymerization (SAN‐AA). SAN‐AA and SAN‐b‐S/AA were each melt blended with PE grafted with epoxy functional glycidyl methacrylate (PE‐GMA) at 160 °C in a twin screw extruder (70:30 wt % PE‐GMA:SAN co/terpolymer). The non‐reactive PE‐g‐GMA/SAN blend had a volume to surface area diameter = 3.0 μm while the reactive blends (via epoxy/acid coupling) (PE‐GMA/SAN‐b‐SAA and PE‐GMA/SAN‐AA) had = 1.7 μm and 1.1 μm, respectively. After thermal annealing, the non‐reactive blend coarsened dramatically while the reactive blends showed little signs of coarsening, suggesting that the acid/epoxy coupling was effective for morphological stability. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44178. |
| |
Keywords: | blends copolymers radical polymerization synthesis and processing |
|
|