首页 | 本学科首页   官方微博 | 高级检索  
     

多标记学习研究综述
引用本文:余 鹰. 多标记学习研究综述[J]. 计算机工程与应用, 2015, 51(17): 20-27
作者姓名:余 鹰
作者单位:华东交通大学 软件学院,南昌 330013
摘    要:多标记学习考虑一个对象与多个类别标记相关联的情况,是当前国际机器学习领域研究的热点问题之一。多标记学习的研究主要围绕降低特征空间和标记空间的复杂性,提高多标记学习算法的精度而展开。针对这一特点,从多标记分类、标记排序、多标记维度约简和标记相关性分析四个方面,对多标记学习的研究进展进行了归纳与阐述,分析了当前多标记学习存在的问题。最后指出了目前多标记学习若干发展方向,为该领域的进一步研究提供参考。

关 键 词:多标记学习  分类  标记相关性  维度约简  

Survey on multi-label learning
YU Ying. Survey on multi-label learning[J]. Computer Engineering and Applications, 2015, 51(17): 20-27
Authors:YU Ying
Affiliation:School of Software, East China Jiaotong University, Nanchang 330013, China
Abstract:Multi-label learning, which considers the case of an object related to multiple labels, attracts much attention in recent years. Multi-label learning research aims to improve the performance of multi-label learning algorithms by reducing the complexity of the feature space and the label space. This paper systematically analyses the developments in multi-label learning research from four aspects including multi-label classification, label ranking, multi-label dimension reduction and label correlation and also points out the existing problems in the multi-label learning research. Finally, it summarizes several valuable research directions, which provides reference for the further research in this field.
Keywords:multi-label learning  classification  label correlation  dimension reduction  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号