首页 | 本学科首页   官方微博 | 高级检索  
     

基于特征相似性的RGBD点云配准
引用本文:盛敏,彭玉升,苏本跃,王广军. 基于特征相似性的RGBD点云配准[J]. 图学学报, 2019, 40(5): 829. DOI: 10.11996/JG.j.2095-302X.2019050829
作者姓名:盛敏  彭玉升  苏本跃  王广军
作者单位:安庆师范大学数学与计算科学学院,安徽安庆 246011;安徽省智能感知与计算重点实验室,安徽安庆 246011;合肥工业大学计算机与信息学院,安徽合肥,230601;安徽省智能感知与计算重点实验室,安徽安庆 246011;安庆师范大学计算机与信息学院,安徽安庆 246011
基金项目:国家自然科学基金项目(11475003,61603003,11471093);教育部“云数融合科教创新”基金项目(2017A09116);安徽省科技重大专项 (18030901021);安徽省高校优秀拔尖人才培育资助项目(gxbjZD26)
摘    要:三维点云数据的配准是计算机视觉领域的重要研究课题,也是三维重建的关键步 骤。针对 RGBD 点云数据的配准问题,提出一种基于特征相似性的初始配准方法。首先需要计 算待配准的 RGBD 点云模型的曲率和颜色特征度(CFD),并对 CFD 进行统计分析,若模型颜色 特征足够丰富优先采用颜色相似性策略,反之尝试曲率相似性策略。通过特征点提取精简点云 模型,利用确定的对应点选择策略选择候选对应点对。在候选对应点对上采用优化样本一致性 算法获得初始配准变换矩阵,实现两片点云的初始配准。针对不同颜色纹理的 RGBD 点云模型, 本文方法可以自适应选择合适的特征点选择策略,实现点云间良好的初始配准。实验结果表明, 对于几何特征不明显的 RGBD 模型,本文方法能够自适应选择颜色相似性策略来较好地完成初 始配准。对于不同类型的模型配准结果较好,算法效率更高。

关 键 词:RGBD点云  初始配准  特征相似性  颜色相似性  曲率相似性

RGBD Point Cloud Registration Based on Feature Similarity
SHENG Min,PENG Yu-sheng,SU Ben-yue,WANG Guang-jun. RGBD Point Cloud Registration Based on Feature Similarity[J]. Journal of Graphics, 2019, 40(5): 829. DOI: 10.11996/JG.j.2095-302X.2019050829
Authors:SHENG Min  PENG Yu-sheng  SU Ben-yue  WANG Guang-jun
Affiliation:(1. School of Mathematics and Computational Science, Anqing Normal University, Anqing Anhui 246011, China;2. The Key Laboratory of Intelligent Perception and Computing of Anhui Province, Anqing Anhui 246011, China;3. School of Computer Science and Information Engineering, Hefei University of Technology, Hefei Anhui 230601, China;4. School of Computer and Information, Anqing Normal University, Anqing Anhui 246011, China)
Abstract:The registration of 3D point cloud data is an important research topic in the field of computer vision and a key step in 3D reconstruction. Aiming at the registration problem of RGBD point cloud data, a coarse registration method based on feature similarity is proposed. Firstly, the curvature and color characteristics of the RGBD point cloud model to be registered should be calculated. Through the statistical analysis of color characteristics, if the color features of the model are rich enough, the color similarity strategy will be adopted first, otherwise, the curvature similarity strategy will be tried. The feature point extraction can simplify the point cloud model. And we will use the corresponding point selection strategy to select all corresponding point pairs. The coarse registration matrix is obtained by adopting the optimized sample consensus algorithm on the candidate corresponding pairs, and the coarse registration of the two point clouds is realized. For the RGBD point cloud model with different colors and texture, this method can adaptively select the appropriate feature point selection strategy to realize the good coarse registration between point clouds. For different models, we can adaptively select the corresponding selection strategy to calculate the transformation matrix and complete the coarse registration. The experimental results show that the proposed method can adaptively select the color similarity strategy to complete the coarse registration for the RGBD model with less geometric features. For different types of model, the registration results are better, and the algorithm is more efficient.
Keywords:RGBD point cloud  coarse registration  feature similarity  color similarity  curvature similarity   
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《图学学报》浏览原始摘要信息
点击此处可从《图学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号