首页 | 本学科首页   官方微博 | 高级检索  
     

基于生成对抗网络的分级联合图像补全方法
引用本文:冀俭俭,杨刚. 基于生成对抗网络的分级联合图像补全方法[J]. 图学学报, 2019, 40(6): 1008. DOI: 10.11996/JG.j.2095-302X.2019061008
作者姓名:冀俭俭  杨刚
作者单位:北京林业大学信息学院,北京 100083;北京林业大学信息学院,北京 100083
基金项目:中央高校基本科研业务费专项资金(2015ZCQ-XX)
摘    要:已有的图像补全工作大都基于规则的、区域较小或者有足够上下文信息的待补全 区域。当待补全区域面积较大时,由于上下文信息的缺失及生成对抗网络(GAN)训练的不稳定 性,往往会产生模糊或失真的补全结果。尤其是当缺失区域位于图像边缘位置时,补全结果会 出现较大的空白及伪彩色。基于以上情况,在已有的基于 GAN 的补全方法的基础上提出一种 分级联合图像补全方法,并针对 GAN 训练不稳定的问题对网络结构做出了改进。一方面改善 了由于缺失区域面积较大产生的补全结果有空白生成的问题,从而使补全结果的纹理细节更加 真实、清晰;另一方面使得对抗网络训练更加稳定,抑制了伪彩色的生成。实验结果表明分级 联合图像补全方法取得了更好的补全结果。

关 键 词:图像补全  GAN  分级联合  大面积缺失区域  边缘缺失区域

Hierarchical Joint Image Completion Method Based on Generative Adversarial Network
JI Jian-jian,YANG Gang. Hierarchical Joint Image Completion Method Based on Generative Adversarial Network[J]. Journal of Graphics, 2019, 40(6): 1008. DOI: 10.11996/JG.j.2095-302X.2019061008
Authors:JI Jian-jian  YANG Gang
Affiliation:(College of Information, Beijing Forestry University, Beijing 100083, China)
Abstract: Existing image completion work is mostly based on missing regions with regular, small area or sufficient context information. When the area of the region to be completed is relatively large, the completion work tends to be blurred or distorted due to the lack of context information and the instability of the generative adversarial network (GAN) training. Especially, if the missing area is located at the edge of the image, the final completion result will have large blank area or pseudo color. To solve the above two problems, the method of hierarchical joint image completion on the basis of GAN is proposed, and the network structure is improved to address the problem of unstable GAN training. On the one hand, it overcomes the problem of the generation of blank area in completion results due to the large missing area, thereby producing more realistic and clear texture details. On the other hand, it makes the adversarial network training more stable and suppresses the generation of pseudo-color. The experimental results demonstrate that the proposed method achieves better completion results.
Keywords: image completion  GAN  hierarchical joint  large missing area  edge missing area  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《图学学报》浏览原始摘要信息
点击此处可从《图学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号