首页 | 本学科首页   官方微博 | 高级检索  
     

松香基表面活性剂调控制备NiO纳米微球及其吸附刚果红
引用本文:邱子言,王怀,罗诗兰,胡飞龙,黄钦,宋湛谦. 松香基表面活性剂调控制备NiO纳米微球及其吸附刚果红[J]. 生物质化学工程, 2021, 55(1): 39-48. DOI: 10.3969/j.issn.1673-5854.2021.01.006
作者姓名:邱子言  王怀  罗诗兰  胡飞龙  黄钦  宋湛谦
作者单位:中国林业科学研究院林产化学工业研究所,江苏南京210042;广西民族大学,广西林产化学与工程重点实验室,广西南宁530006;广西民族大学,广西林产化学与工程重点实验室,广西南宁530006;中国林业科学研究院林产化学工业研究所,江苏南京210042
基金项目:广西基地和人才专项资助项目(AD18126005);国家自然科学基金资助项目(21701035)
摘    要:通过天然产物松香制备松香基表面活性剂,利用该表面活性剂调控晶体生长制备出多级Ni(OH)2纳米结构,并进一步制备成NiO微球.通过FT-IR、NMR、XRD、SEM、TEM等表征确定了NiO的形貌及结构,通过BET等表征测试确定了其为多级多孔的结构.FT-IR、UV研究表明该多级纳米NiO对刚果红具有极高的吸附能力,其...

关 键 词:松香  表面活性剂  纳米NiO  微球  吸附
收稿时间:2019-12-06

Preparation of NiO Nanospheres by Rosin-based Surfactants and Their Adsorption of Congo Red
Ziyan QIU,Huai WANG,Shilan LUO,Feilong HU,Qin HUANG,Zhanqian SONG. Preparation of NiO Nanospheres by Rosin-based Surfactants and Their Adsorption of Congo Red[J]. Biomass Chemical Engineering, 2021, 55(1): 39-48. DOI: 10.3969/j.issn.1673-5854.2021.01.006
Authors:Ziyan QIU  Huai WANG  Shilan LUO  Feilong HU  Qin HUANG  Zhanqian SONG
Affiliation:1. Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, China2. Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, China
Abstract:Rosin-based surfactant was prepared from rosin and the surfactant was used to regulate the crystal growth and synthesis Ni(OH)2 with hierarchical nanostructures.The NiO microspheres were further prepared by using Ni(OH)2 as the precursor.The structure of NiO was characterized by FT-IR, NMR, XRD, SEM and TEM. The porosity of NiO microspheres was determined by BET. The characterization results of FT-IR and UV showed that the hierarchical structure of NiO microspheres showed very high adsorption capacity for Congo red (CR).The maximum adsorption amount was 657.89 mg/g, which was much better than that of commercial NiO(337.18 mg/g).The results showed that the adsorption reached equilibrium after 10 min and the equilibrium adsorption capacity was 50 mg/g at pH value of 3 when the concentration of Congo red was 50 mg/L and the amount of NiO was 16.8 mg. The NiO adsorption of Congo red was in accordance with the Freundlich model and the adsorption is an endothermic process. The adsorption kinetics conforms to the quasi-second-order kinetic equation. The adsorption process is dominated by chemical adsorption. The adsorption efficiency was not obviously reduced after several cycles. The removal rate of adsorption Congo red was maintained by 98% after recyceling for 5 times.
Keywords:rosin  surfactant  nano-NiO  nanospheres  adsorption  
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《生物质化学工程》浏览原始摘要信息
点击此处可从《生物质化学工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号