首页 | 本学科首页   官方微博 | 高级检索  
     

基于分数阶网络和强化学习的图像实例分割模型
引用本文:李学明,吴国豪,周尚波,林晓然,谢洪斌. 基于分数阶网络和强化学习的图像实例分割模型[J]. 计算机应用, 2022, 42(2): 574-583. DOI: 10.11772/j.issn.1001-9081.2021020324
作者姓名:李学明  吴国豪  周尚波  林晓然  谢洪斌
作者单位:重庆大学 计算机学院, 重庆 400044
河北经贸大学 信息技术学院, 石家庄 050061
外生成矿与矿山环境重庆市重点实验室(重庆地质矿产研究院), 重庆 400042
基金项目:河北省高等学校科学技术研究项目(QN2019069);;重庆市自然科学基金面上项目(cstc2019jcyj-msxm X0657)~~;
摘    要:针对目前的分数阶非线性模型图像特征提取能力不足导致分割精度较低的问题,提出一种基于分数阶网络和强化学习(RL)的图像实例分割模型,用来分割出图像中目标实例的高质量轮廓曲线.该模型共包含两层模块:1)第一层为二维分数阶非线性网络,主要采用混沌同步方法来获取图像中像素点的基础特征,并通过根据像素点间的相似性进行耦合连接的方...

关 键 词:强化学习  分数阶网络  混沌同步  混沌吸引子  马尔可夫决策过程  像素-动作策略
收稿时间:2021-03-04
修稿时间:2021-04-29

Image instance segmentation model based on fractional-order network and reinforcement learning
LI Xueming,WU Guohao,ZHOU Shangbo,LIN Xiaoran,XIE Hongbin. Image instance segmentation model based on fractional-order network and reinforcement learning[J]. Journal of Computer Applications, 2022, 42(2): 574-583. DOI: 10.11772/j.issn.1001-9081.2021020324
Authors:LI Xueming  WU Guohao  ZHOU Shangbo  LIN Xiaoran  XIE Hongbin
Affiliation:College of Computer Science,Chongqing University,Chongqing 400044,China
School of Information Technology,Hebei University of Economics and Business,Shijiazhuang Hebei 050061,China
Chongqing Key Laboratory of Exogenic Mineralization and Mine Environment (Chongqing Institute of Geology and Mineral Resources),Chongqing 400042,China
Abstract:Aiming at the low segmentation precision caused by the lack of image feature extraction ability of the existing fractional-order nonlinear models, an instance segmentation model based on fractional-order network and Reinforcement Learning (RL) was proposed to generate high-quality contour curves of target instances in the image. The model consists of two layers of modules: 1) the first layer was a two-dimensional fractional-order nonlinear network in which the chaotic synchronization method was mainly utilized to obtain the basic characteristics of the pixels in the image, and the preliminary segmentation result of the image was acquired through the coupling and connection according to the similarity among the pixels; 2) the second layer was to establish instance segmentation as a Markov Decision Process (MDP) based on the idea of RL, and the action-state pairs, reward functions and strategies during the modeling process were designed to extract the region structure and category information of the image. Finally, the pixel features and preliminary segmentation result of the image obtained from the first layer were combined with the region structure and category information obtained from the second layer for instance segmentation. Experimental results on datasets Pascal VOC2007 and Pascal VOC2012 show that compared with the existing fractional-order nonlinear models, the proposed model has the Average Precision (AP) improved by at least 15 percentage points, verifying that the sequential decision-based instance segmentation model not only can obtain the class information of the target objects in the image, but also further enhance the ability to extract contour details and fine-grained information of the image.
Keywords:Reinforcement Learning (RL)  fractional-order network  chaos synchronization  chaotic attractor  Markov Decision Process (MDP)  pixel-action strategy  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号