首页 | 本学科首页   官方微博 | 高级检索  
     

基于循环生成对抗网络的图像风格迁移
引用本文:彭晏飞,王恺欣,梅金业,桑雨,訾玲玲. 基于循环生成对抗网络的图像风格迁移[J]. 计算机工程与科学, 2020, 42(4): 699-706
作者姓名:彭晏飞  王恺欣  梅金业  桑雨  訾玲玲
作者单位:(辽宁工程技术大学电子与信息工程学院,辽宁 葫芦岛 125105)
基金项目:辽宁省教育厅高等学校基本科研项目;国家自然科学基金
摘    要:图像风格迁移是指将学习到的油画图像风格应用到其他图像上,让图像拥有油画的风格,当前生成对抗网络已被广泛应用到图像风格迁移中。针对循环生成对抗网络CycleGAN在处理图像时纹理清晰度不高的问题,提出了加入局部二值模式LBP算法的方法,将LBP算法加入生成对抗网络的生成器中,增强了循环对抗生成网络提取图像纹理特征内容的效果。针对生成图像产生噪声的问题,在损失函数中加入Total Variation Loss来约束噪声。实验结果表明,循环生成对抗网络加入LBP算法和Total Variation Loss后能提高生成图像的质量,使之具有更好的视觉效果。

关 键 词:图像风格迁移  循环生成对抗网络  局部二值模式  Total Variation Loss  
收稿时间:2019-10-31
修稿时间:2019-12-11

Image style migration based on cycle generative adversarial networks
PENG Yan-fei,Wang Kai-xin,Mei Jin-ye,SANG Yu,ZI Ling-ling. Image style migration based on cycle generative adversarial networks[J]. Computer Engineering & Science, 2020, 42(4): 699-706
Authors:PENG Yan-fei  Wang Kai-xin  Mei Jin-ye  SANG Yu  ZI Ling-ling
Affiliation:(School of Electronic and Information Engineering,Liaoning Technical University,Huludao 125105,China)
Abstract:Image style migration refers to learning the style of oil painting pictures and applying the learned style to other pictures to make the pictures have the style of oil painting. The current methods based on generative adversarial networks have been widely used in image style migration. Aiming at the problem that Cycle Generative Adversarial Networks (CycleGAN) do not have high texture definition when processing images, a method of adding a Local Binary Pattern (LBP) algorithm is proposed. The LBP algorithm is added into the generation model of CycleGAN to enhance the extraction of image texture features by CycleGAN. Aiming at the problem of noise in the generated images, Total Variation Loss is added into the loss function to constrain the noise. The experimental results show that the quality of the generated images can be improved by adding LBP algorithm and Total Variation Loss, and the generated images have better visual effects.
Keywords:image style migration  CycleGAN  local binary pattern (LBP);Total Variation Loss  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与科学》浏览原始摘要信息
点击此处可从《计算机工程与科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号