首页 | 本学科首页   官方微博 | 高级检索  
     

CFG桩复合地基承载力预测的高斯过程模型
引用本文:苏国韶,张研,燕柳斌. CFG桩复合地基承载力预测的高斯过程模型[J]. 计算机工程与应用, 2011, 47(4): 236-238. DOI: 10.3778/j.issn.1002-8331.2011.04.066
作者姓名:苏国韶  张研  燕柳斌
作者单位:广西大学 土木建筑工程学院,南宁 530004
基金项目:国家自然科学基金(No.50809017); 中国博士后科学基金(No.20080440812)~~
摘    要:高斯过程是新近发展的一种机器学习方法,对处理复杂非线性问题具有很好的适应性。针对CFG桩复合地基承载力难以合理确定的问题,提出了基于高斯过程的CFG桩复合地基承载力预测模型。该模型通过对少量训练样本的学习,就可以建立CFG桩复合地基承载力与其影响因素之间的复杂非线性映射关系。将模型应用于工程实例,研究结果表明,CFG桩复合地基承载力预测的高斯过程模型是科学可行的。高斯过程模型的预测精度高,适用性强,具有算法参数自适应化的特点且易于实现,具有良好的工程应用前景。

关 键 词:水泥粉煤灰碎石(CFG)桩  地基承载力  高斯过程  机器学习  预测  
收稿时间:2009-05-22
修稿时间:2009-8-4 

Gaussian process model for forecasting bearing capacity of composite foundation with CFG pole
SU Guoshao,ZHANG Yan,YAN Liubin. Gaussian process model for forecasting bearing capacity of composite foundation with CFG pole[J]. Computer Engineering and Applications, 2011, 47(4): 236-238. DOI: 10.3778/j.issn.1002-8331.2011.04.066
Authors:SU Guoshao  ZHANG Yan  YAN Liubin
Affiliation:School of Civil and Architecture Engineering,Guangxi University,Nanning 530004,China
Abstract:Gaussian Process(GP) is a newly developed machine learning technology and has become a power tool for solving highly nonlinear problems.Aiming at the fact that it is still difficult to reasonably determine the bearing capacity of composite foundation with Cement-flyash-gravel(CFG) pile,the model based on GP is proposed for forecasting bearing capacity of composite foundation with CFG pile.According to few training samples,the nonlinear mapping relationship between bearing capacity of composite foundation wi...
Keywords:cement-flyash-gravel pile  capacity of foundation  Gaussian process  machine learning  forecast
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号