首页 | 本学科首页   官方微博 | 高级检索  
     

基于时间序列的蜂窝网络能量优化方法
引用本文:高岭,陈艳,王海,任杰. 基于时间序列的蜂窝网络能量优化方法[J]. 北京邮电大学学报, 2016, 39(3): 39-43. DOI: 10.13190/j.jbupt.2016.03.006
作者姓名:高岭  陈艳  王海  任杰
作者单位:西北大学 信息科学与技术学院, 西安 710127
基金项目:国家自然科学基金项目(61572041;61373136),陕西省工业攻关项目(2014k05-42)
摘    要:针对移动终端在蜂窝网络中的能耗过高问题,提出了一种基于时间序列的能量优化算法--平衡优化算法(BOA).该算法对移动终端在蜂窝网络中传输的数据块建立自回归滑动平均模型,通过预测下一个数据块的到达时间来动态调整尾巴时间,达到降低能耗的目的.实验结果及分析表明,BOA能达到93.86%的模型匹配率;相比于原标准下的Fixed-tail算法,能达到42.25%的能量优化效果,且用户使用移动终端时间越长,能量优化效果越好.

关 键 词:蜂窝网络  能量优化  尾巴时间  自回归滑动平均模型  
收稿时间:2015-11-21

A Method of Energy Optimization Based on Time Series for Cellular Network
GAO Ling,CHEN Yan,WANG Hai,REN Jie. A Method of Energy Optimization Based on Time Series for Cellular Network[J]. Journal of Beijing University of Posts and Telecommunications, 2016, 39(3): 39-43. DOI: 10.13190/j.jbupt.2016.03.006
Authors:GAO Ling  CHEN Yan  WANG Hai  REN Jie
Affiliation:School of Information Science and Technology, Northwest University, Xi'an 710127, China
Abstract:Aiming at the high energy consumption of mobile terminal under cellular networks, a new en-ergy optimization algorithm balance optimization algorithm ( BOA) based on time series is proposed to im-prove the energy efficiency of smartphones. The proposed algorithm builds the auto-regressive and moving average model for the data blocks in the cellular network, and dynamically adjusts the tail time to achieve the purpose of reducing the energy consumption by predicting the arrival time of the next block. Experi-ments show that BOA can achieve the average model matching rate up to 93. 86%. Compared to tradi-tional fixed-tail algorithm, the BOA enables reduce energy consumption by 42. 25%,and analysis shows that the longer smartphones are used, the higher energy efficiency can be achieved.
Keywords:cellular network  energy optimization  tail time  auto-regressive and moving average model
本文献已被 万方数据 等数据库收录!
点击此处可从《北京邮电大学学报》浏览原始摘要信息
点击此处可从《北京邮电大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号