首页 | 本学科首页   官方微博 | 高级检索  
     

基于并行注意力UNet的裂缝检测方法
引用本文:刘凡, 王君锋, 陈峙宇, 许峰. 基于并行注意力UNet的裂缝检测方法[J]. 计算机研究与发展, 2021, 58(8): 1718-1726. DOI: 10.7544/issn1000-1239.2021.20210335
作者姓名:刘凡  王君锋  陈峙宇  许峰
作者单位:1.(河海大学计算机信息学院 南京 210098) (海岸灾害与防护教育部重点实验室(河海大学) 南京 210098) (191307040025@hhu.edu.cn)
基金项目:江苏省自然科学基金;中央高校基本科研业务费专项;河海大学海岸灾害;教育部重点实验室开放基金
摘    要:裂缝对公共设施而言存在着安全隐患,因此裂缝检测是公共设施进行维护的重要手段.由于裂缝图像中存在噪声、光线、阴影等因素干扰,神经网络在训练时极易被影响,导致预测结果出现偏差,降低预测效果.为减少这些干扰,设计了一个并行注意力机制,并将其嵌入到UNet网络的解码部分,进而提出了并行注意力UNet(parallel attention based UNet, PA-UNet).该方法分别从通道和空间2个维度加大裂缝特征权重以抑制干扰,然后对这2个维度生成的特征进行融合,以获得更具互补性的裂缝特征.为了验证该方法的有效性,选取了4个数据集进行实验,结果表明该方法较现有的主流方法,裂缝检测效果更加优异.同时,为了验证并行注意力机制的有效性,选取了4种注意力机制与其进行对比实验,结果表明并行注意力机制效果优于其他注意力机制.

关 键 词:裂缝检测  并行注意力机制  UNet  抑制干扰  互补性

Parallel Attention Based UNet for Crack Detection
Liu Fan, Wang Junfeng, Chen Zhiyu, Xu Feng. Parallel Attention Based UNet for Crack Detection[J]. Journal of Computer Research and Development, 2021, 58(8): 1718-1726. DOI: 10.7544/issn1000-1239.2021.20210335
Authors:Liu Fan  Wang Junfeng  Chen Zhiyu  Xu Feng
Affiliation:1.(College of Computer Information, Hohai University, Nanjing 210098) (Key Laboratory of Coastal Disaster and Protection(Hohai University), Ministry of Education, Nanjing 210098)
Abstract:Cracks have hidden safety hazards to public facilities, so crack detection is essential for the maintenance of public facilities. Due to the interference of noise, light, shadow, and other factors in the crack images, the neural network is easily affected during the training process, which causes deviations in the prediction results and reduces the prediction effect. To suppress these disturbances, a parallel attention mechanism is designed and then the parallel attention based UNet(PA-UNet) is proposed by embedding this attention mechanism into UNet. The parallel attention mechanism increases the weights of crack features from the two dimensions of channel and space to suppress interference, then fuses the features generated by these two dimensions to obtain more complementary crack features. To verify the effectiveness of the proposed method, we have conducted experiments on four data sets. Experimental results show that our method outperforms the existing popular methods. Meanwhile, to demonstrate the effectiveness of the parallel attention mechanism, we conduct a comparative experiment with other four attention mechanisms. The results show that the parallel attention mechanism performs better than others.
Keywords:crack detection  parallel attention mechanism  UNet  suppress interference  complementary
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机研究与发展》浏览原始摘要信息
点击此处可从《计算机研究与发展》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号