首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进深度度量学习算法的表面缺陷检测
引用本文:王伟,余厚云. 基于改进深度度量学习算法的表面缺陷检测[J]. 计算机与现代化, 2021, 0(6): 61-68. DOI: 10.3969/j.issn.1006-2475.2021.06.011
作者姓名:王伟  余厚云
作者单位:南京航空航天大学机电学院,江苏 南京 210016;南京航空航天大学无锡研究院,江苏 无锡 214187
基金项目:国家自然科学基金资助项目(51975293)
摘    要:为了解决小批量、多品种工业产品的表面质量检测问题,提出一种基于改进深度度量学习的缺陷检测算法.该算法对VGG16网络模型做改进,更有利于原始图像的隐空间映射.针对产品表面缺陷检测的任务,提出条件三元组损失函数以加强神经网络的拟合能力.同时,在隐空间中进行缺陷判定时,抛弃原始度量学习中基于KNN算法的归类方法,提出基于高...

关 键 词:表面质量  视觉检测  神经网络  深度度量学习  小样本学习  条件三元组损失  高斯分布
收稿时间:2021-07-05

Surface Defect Detection Based on Improved Deep Metric Learning Algorithm
WANG Wei,YU Hou-yun. Surface Defect Detection Based on Improved Deep Metric Learning Algorithm[J]. Computer and Modernization, 2021, 0(6): 61-68. DOI: 10.3969/j.issn.1006-2475.2021.06.011
Authors:WANG Wei  YU Hou-yun
Abstract:An algorithm based on deep metric learning is proposed for the surface defect detection of small batches and multiple varieties of industrial products. The algorithm improves the VGG16 network model, which is more suitable for mapping the original image to the latent space; for the task of product surface defect detection, a conditional triplet loss function is proposed to strengthen the fitting ability of neural network. When the defect is judged in the latent space, the classification model based on the KNN algorithm in the original metric learning algorithm is discarded, and the classification method based on the Gaussian distribution probability is proposed. When new types of products are detected, on the basis of the trained network model, the network is finely tuned by using the image data of the new product as input. Through the above improvements to the deep metric learning algorithm for the defect detection task, after K-Fold cross-validation on the button defect data set, the accuracy on different query sets is over 90%, and the highest can reach 99.89%, by providing 50 non-defective samples and 50 defective samples for training the network. And compared with traditional deep metric learning algorithms, the accuracy is increased by about 10%. The experimental results show that the improved deep metric learning algorithm can well solve the surface defect detection problem of small batch and multi-variety industrial products.
Keywords:surface quality  vision detection  neural network  deep metric learning  few-shot learning  conditional triplet loss  Gaussian distribution  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机与现代化》浏览原始摘要信息
点击此处可从《计算机与现代化》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号