首页 | 本学科首页   官方微博 | 高级检索  
     


Modeling arbitrary crack propagation in coupled shell/solid structures with X‐FEM
Authors:Qinglei Zeng  Zhanli Liu  Dandan Xu  Heng Wang  Zhuo Zhuang
Affiliation:AML, School of Aerospace Engineering, Tsinghua University, Beijing, China
Abstract:In this paper, the extended finite element method (X‐FEM) formulation for the modeling of arbitrary crack propagation in coupled shell/solid structures is developed based on the large deformation continuum‐based (CB) shell theory. The main features of the new method are as follows: (1) different kinematic equations are derived for different fibers in CB shell elements, including the fibers enriched by shifted jump function or crack tip functions and the fibers cut into two segments by the crack surface or connecting with solid elements. So the crack tip can locate inside the element, and the crack surface is not necessarily perpendicular to the middle surface. (2) The enhanced CB shell element is developed to realize the seamless transition of crack propagation between shell and solid structures. (3) A revised interaction integral is used to calculate the stress intensity factor (SIF) for shells, which avoids that the auxiliary fields for cracks in Mindlin–Reissner plates cannot satisfy exactly the equilibrium equations. Several numerical examples, including the calculation of SIF for the cracked plate under uniform bending and crack propagation between solid and shell structures are presented to demonstrate the performance of the developed method. Copyright © 2015 John Wiley & Sons, Ltd.
Keywords:CB shell element  X‐FEM  arbitrary crack propagation  shell/solid structure  transition element
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号