首页 | 本学科首页   官方微博 | 高级检索  
     

一种混沌优化机制的双量子粒子群优化算法
引用本文:齐名军,杨爱红. 一种混沌优化机制的双量子粒子群优化算法[J]. 计算机工程与应用, 2009, 45(30): 34-36. DOI: 10.3778/j.issn.1002-8331.2009.30.011
作者姓名:齐名军  杨爱红
作者单位:鹤壁职业技术学院,河南,鹤壁,458030;鹤壁职业技术学院,河南,鹤壁,458030
摘    要:针对量子粒子群优化算法(quantum delta Particle Swarm Optimization,PSO)在处理高维复杂函数时存在收敛速度慢、易陷入局部最优和算法通用性不强等缺点,提出了一种基于混沌优化机制的双量子粒子群优化算法。它借鉴群体位置方差的早熟判断机制,同时提出了一种逐步缩小搜索变量空间的新方法。典型数值实验表明,该算法效率高、优化性能好、对初始位置具有很强的鲁棒性。尤其是该算法具有很强的避免局部极小能力,其性能远远优于单一优化方法。

关 键 词:双量子粒子群优化算法  双混沌优化机制  早熟机制
收稿时间:2008-04-10
修稿时间:2008-6-30 

Double quantum delta particle swarm optimization based on chaos optimization strategy
QI Ming-jun,YANG Ai-hong. Double quantum delta particle swarm optimization based on chaos optimization strategy[J]. Computer Engineering and Applications, 2009, 45(30): 34-36. DOI: 10.3778/j.issn.1002-8331.2009.30.011
Authors:QI Ming-jun  YANG Ai-hong
Affiliation:Hebi College of Vocation and Technology,Hebi,Henan 458030,China
Abstract:Using quantum delta Particle Swarm Optimization(PSO) to handle complex functions with high-dimension has the problems of low convergence speed and sensitivity to local convergence.This paper proposes a double quantum delta particle swarm optimization based on chaos optimization strategy.It adopts prematurity judge mechanism by the variance of the population’s fitness and a new method of reducing the searching space of variable optimized is proposed.Numerical simulation results on benchmark complex functions with high dimension show that the hybrid particle swarm optimization is effective,efficient,fairly robust to initial conditions.Especially the hybrid particle swarm optimization is of strong ability to avoid being trapped in local minima,and performances are fairly superior to single method.
Keywords:double quantum delta particle swarm optimaziton  double chaos optimization  quickly convergence strategy
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号