首页 | 本学科首页   官方微博 | 高级检索  
     

离群数据关键域子空间快速搜索技术
引用本文:金义富,杨俊杰. 离群数据关键域子空间快速搜索技术[J]. 计算机工程与应用, 2011, 47(17): 145-147. DOI: 10.3778/j.issn.1002-8331.2011.17.039
作者姓名:金义富  杨俊杰
作者单位:湛江师范学院 信息学院,广东 湛江 524048
摘    要:离群数据挖掘与分析在通信欺诈检测、疾病诊断和网络入侵检测等多个领域具有十分重要的意义。离群数据关键域子空间可以获得数据离群起源与特征等相应的延伸知识。通过对离群数据对象与其属性值的关系讨论并基于探索性数据分析方法,提出了一种离群数据关键域子空间实时快速搜索算法。实验结果表明提出的算法是有效的,可以满足大多数实时性检测与分析要求。

关 键 词:关键域子空间  离群分析  数据探索性分析  实时算法  
修稿时间: 

Fast searching technique for key attribute subspace of outliers
JIN Yifu,YANG Junjie. Fast searching technique for key attribute subspace of outliers[J]. Computer Engineering and Applications, 2011, 47(17): 145-147. DOI: 10.3778/j.issn.1002-8331.2011.17.039
Authors:JIN Yifu  YANG Junjie
Affiliation:School of Information,Zhanjiang Normal University,Zhanjiang,Guangdong 524048,China
Abstract:Detecting and analyzing outliers are of great importance in many applications,including telecom fraud detection, disease diagnosis,and network invasion detection,etc.Moreover, many of these fields require good real-time performance.The key attribute subspace of outliers is helpfull to find out the extended knowledge of identified outliers, such as their origin and features.Having discussed the relation of outlying individual and its outlying attribute values, this paper proposes a real-time searching algorithm for key attribute subspace of outliers based on data exploration analysis mode.Experimental resuits show that the approach is scalable and it can efficiently satisfy the demand of real-time outlier analysis.
Keywords:key attribute subspace  outlier analysis  data exploration analysis  real-time algorithm
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号