首页 | 本学科首页   官方微博 | 高级检索  
     

P300信号分类的多样本融合支持向量机算法
引用本文:范 玮,罗思吟,邓轶赫,王 炜,李圆媛. P300信号分类的多样本融合支持向量机算法[J]. 武汉工程大学学报, 2021, 43(6): 670-674. DOI: 10.19843/j.cnki.CN42-1779/TQ.202101006
作者姓名:范 玮  罗思吟  邓轶赫  王 炜  李圆媛
作者单位:武汉工程大学数理学院,湖北 武汉 430205
摘    要:脑电信号是大脑受到自发或诱发刺激所产生的一种变化的脑电活动,利用结合了多样本融合思想的支持向量机(SVM)算法,在不同受试者的多样本数据上对诱发脑电信号中的P300信号进行了分类识别。首先对实验数据进行预处理和特征提取,然后利用SVM算法训练分类模型,最后通过融合多个样本的预测结果对测试数据的P300信号进行识别。结果表明,相比单样本SVM算法该方法对检测数据有较高的分类准确率,能够成为P300脑电信号预测的较好方法,具有应用前景。

关 键 词:脑电信号  P300信号  SVM算法  多样本融合

Support Vector Machine Algorithm with Multi-Sample Fusion for P300 Signal Classification
FAN Wei,LUO Siyin,DENG Yihe,WANG Wei,LI Yuanyuan. Support Vector Machine Algorithm with Multi-Sample Fusion for P300 Signal Classification[J]. Journal of Wuhan Institute of Chemical Technology, 2021, 43(6): 670-674. DOI: 10.19843/j.cnki.CN42-1779/TQ.202101006
Authors:FAN Wei  LUO Siyin  DENG Yihe  WANG Wei  LI Yuanyuan
Affiliation:School of Mathematics and Physics,Wuhan Institute of Technology, Wuhan 430205, China
Abstract:Electroencephalogram(EGG) signal is a type of altered EEG activity produced by spontaneous or evoked stimulus of the brain. A support vector machine (SVM) algorithm with multi-sample fusion was applied for the classification of the P300 in the multi-sample evoked EEG signals from different subjects. First, the experimental data were preprocessed and the features were extracted, then the classification models were trained by SVM, and finally the prediction results of different samples were integrated in identifying the P300 signal of the test data. The results show that the proposed method has higher?classified?accuracy than the single-sample SVM algorithm, it can become a better method for P300 EEG signal prediction with application prospects.
Keywords:EEG signal  P300 signal  SVM algorithm  multi-sample fusion
点击此处可从《武汉工程大学学报》浏览原始摘要信息
点击此处可从《武汉工程大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号