首页 | 本学科首页   官方微博 | 高级检索  
     

基于模糊聚类的改进LLE算法
引用本文:苏锦旗,张文宇. 基于模糊聚类的改进LLE算法[J]. 计算机与现代化, 2014, 0(5): 10-13. DOI: 10.3969/j.issn.1006-2475.2014.05.003
作者姓名:苏锦旗  张文宇
作者单位:西安邮电大学管理工程学院,陕西西安710061
基金项目:基金项目:国家自然科学基金资助项目(71173248);陕西社会科学基金资助项目(13Q081);西安邮电大学青年教师科研基金资助项目(ZL2012-30)
摘    要:局部线性嵌入法(Locally Linear Embedding,LLE)是一种基于流形学习的非线性降维方法。针对LLE近邻点个数选取、样本点分布以及计算速度的问题,提出基于模糊聚类的改进LLE算法。算法根据聚类中心含有大量的信息这一特点,基于模糊聚类原理,采用改进的样本点距离计算方法,定义了近似重构系数,提高了LLE计算速度,改进了模糊近邻点个数的选取。实验结果表明,改进的算法有效地降低了近邻点个数对算法的影响,具有更好的降维效果和更高的计算速度。

关 键 词:数据降维   流形学习   局部线性嵌入   近似重构系数  
收稿时间:2014-05-30

An Improved LLE Dimensionality Reduction Algorithm Based on FCM
SU Jin-qi,ZHANG Wen-yu. An Improved LLE Dimensionality Reduction Algorithm Based on FCM[J]. Computer and Modernization, 2014, 0(5): 10-13. DOI: 10.3969/j.issn.1006-2475.2014.05.003
Authors:SU Jin-qi  ZHANG Wen-yu
Affiliation:(School of Management Engineering, Xi'an University of Posts & Telecommunications, Xi'an 710061, China)
Abstract:Locally Linear Embedding(LLE) is one of the non-linear dimensionality reduction methods which are based on manifold learning. Focused on the existing problem of the selection of the neighborhood and the distribution of sample points, also the time-consuming, an improved LLE algorithm for dimension reduction was proposed. Based on fuzzy clustering theory and distance calculation method, by making use of the characteristic of cluster center including massive information, this paper defined the approximately reconstructing coefficient. The experimental results show that the improved LLE can reduce the influence of the number of neighbors efficiently and obtain good results, also it can reduce time-consuming.
Keywords:dimensionality reduction  manifold learning  locally linear embedding  approximate reconstruction coefficient
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《计算机与现代化》浏览原始摘要信息
点击此处可从《计算机与现代化》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号