首页 | 本学科首页   官方微博 | 高级检索  
     


A General Robust MPC Design for the State‐Space Model: Application to Paper Machine Process
Authors:S. Hassan HosseinNia  Michael Lundh
Abstract:Applying model predictive control (MPC) in some cases such as complicated process dynamics and/or rapid sampling leads us to poorly numerically conditioned solutions and heavy computational load. Furthermore, there is always mismatch in a model that describes a real process. Therefore, in this paper in order to prevail over the mentioned difficulties, we design a robust MPC using the Laguerre orthonormal basis in order to speed up the convergence at the same time with lower computation adding an extra parameter “a” in MPC. In addition, the Kalman state estimator is included in the prediction model and accordingly the MPC design is related to the Kalman estimator parameters as well as the error of estimations which helps the controller react faster against unmeasured disturbances. Tuning the parameters of the Kalman estimator as well as MPC is another achievement of this paper which guarantees the robustness of the system against the model mismatch and measurement noise. The sensitivity function at low frequency is minimized to tune the MPC parameters since the lower the magnitude of the sensitivity function at low frequency the better command tracking and disturbance rejection results. The integral absolute error (IAE) and peak of the sensitivity are used as constraints in optimization procedure to ensure the stability and robustness of the controlled process. The performance of the controller is examined via the controlling level of a Tank and paper machine processes.
Keywords:Model predictive control  MPC tuning  optimization  orthonormal basis function  Laguerre network
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号